### TABLE OF CONTENTS

| LESSON    | TITLE                      | PAGE |
|-----------|----------------------------|------|
| 1 48      | Sets and Operation on Sets | 1    |
| 49 - 88   | Real Number System         | 49   |
| 89 – 97   | Standard Form              | 89   |
| 98 - 113  | Binary Operation           | 98   |
| 114 - 176 | Algebraic Expressions      | 114  |
| 177 - 197 | Surds                      | 177  |
| 198 - 215 | Number Bases               | 198  |
| 216 - 244 | Relations & Functions      | 216  |
| 245 - 263 | Co – Ordinate Geometry     | 245  |
| 264 - 305 | Plane Geometry I           | 264  |
| 306 - 327 | Polygons                   | 306  |
| 328 - 354 | Change of Subject          | 328  |
| 355 – 379 | Linear Equations           | 355  |
| 380 - 392 | Linear Inequalities        | 380  |
| 393 - 432 | Bearings & Vectors         | 393  |

### **SETS & OPERATION ON SETS**

A set is a collection of **well – defined distinct** objects. "Objects" may be things, people or symbols. The objects in a given set are called the elements or members of that set and are said to belong to or contained in the set. "Well – defined" means that there must be no doubt whatsoever about whether or not a given item belongs to the set under consideration. "Distinct" is used in the sense that no two identical objects should be contained in the same set.

#### Membership

If x is a member of a set A, we write  $x \in A$ , which is read as "x belongs to A". The symbol  $\in$  stands for "is a member of" or "is an element of" or "belongs to" and  $\notin$  means it is not a member of.

Sets are generally denoted by capital letters A, B, C, ..., X, Y, Z and the members or elements are denoted by lowercase letters a, b, c, ..., x, y, z. e.g.  $A = \{a, b, c, d\}$ 

clearly b is a member of or "an element" of A and we write  $b \in A$ . Clearly m is not a member of or "not an element" of A and we write  $m \notin A$ .

### Exercise 1 Date:.....

List five elements of each of the following.

- (i) The set of prefects in your school.
- (ii) The set of students in your class.
- (iii) The set of integers greater than 4 but less than 20.
- (iv) The set of prime numbers greater than 2 but less than 32.

| <br> | <br> |
|------|------|
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |

#### 

| (i)   | 7 M | (iv) | 9 N  |
|-------|-----|------|------|
| (ii)  | 8 N | (v)  | 8 ∉  |
| (iii) | 2 M | (vi) | 13 ∉ |

| Exercise 3           | Date:                 |
|----------------------|-----------------------|
| List the elements of | each of the following |
| sets.                |                       |

- (i)  $A = \{ \text{whole numbers from 5 to 15} \}$
- (ii)  $B = \{\text{multiples of 3 between 9 and 51}\}$
- (iii)  $P = \{\text{prime numbers between 1 and } 20\}$
- (iv)  $Q = \{\text{natural numbers less than 17}\}$
- (v) N = {composite numbers between 1 and 17}

| <br>         |
|--------------|
|              |
|              |
| <br>         |
|              |
|              |
| <br>         |
| <br><u>-</u> |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
| <br>         |
|              |
|              |
|              |
| <br>         |
|              |
|              |
|              |
|              |
|              |
| <br>         |
|              |
|              |
|              |

| <b>SET – BUILDER NOTATION</b> Set – builder notation is a mathematical notation for describing a set by stating the property that its members must satisfy. For example, $A = \{x: x \text{ is a prime number, } 1 < x < 20\}$ . In the above expression for $A$ , the colon ':' means 'such that'. Some use " " instead of ":" so $A$ could be written as $A = \{x   x \text{ is a prime number, } 1 < x < 20\}$ | <ul> <li>Exercise 5 Date:</li> <li>List the elements in the following sets.</li> <li>1. {x: x is a month with 31 days}</li> <li>2. {x: x is a factor of 80}</li> <li>3. {x: 4x = 16}</li> <li>4. {x: x is a multiple of 4 but less than 48}</li> <li>5. {x: x is a square number greater than 3 and less than 47}</li> </ul>       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example 1 Use set – builder notation to describe the following.  (i) The set of integers from 1 to 1000  (ii) The set of even integers.                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |
| Solution (i) $\{x: x \text{ is an integer, and } 1 \le x \le 1000\}$ (ii) $\{x: x \text{ is an even integer}\}$                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                    |
| Exercise 4 Date:  Rewrite the following sets using set – builder notation.  1. {days of the week}  2. {triangles}                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                    |
| 3. {rivers} 4. {students}                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>TYPES OF SETS</li> <li>1. Finite Set A set is said to be finite if it is empty or it consists of exactly n distinct elements where n is a positive integer. e.g. A = {1, 2, 3, 4, 5, 6} </li> <li>2. Infinite Set A set is said to be infinite if it has unlimited number of elements. e.g. A = {2, 4, 6, 8,} </li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>3. Unit Set (Singleton Set)</li> <li>A unit set is a set with exactly one member.</li> <li>e.g. {2}, {5}, {Ø}</li> </ul>                                                                                                                                                                                                  |

| ТН   | E ONLY WAY OF LEARNING MAT                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 4.   | Empty (Null) Set A set with no element or member is called an empty set or a null set. It is denoted by the Scandinavian symbol Ø or { }. |
|      | <b>NOTE:</b> (i) $\{\emptyset\} \neq \emptyset$ but $\{\} = \emptyset$ (ii) An empty set is a finite set.                                 |
| 5.   | Universal Sets The universal set is the set of all objects under consideration. It is usually denoted by U or $\xi$ .                     |
| Exe  | ercise 6 Date:                                                                                                                            |
| Cla  | ssify the following sets as finite or                                                                                                     |
| infi | nite.                                                                                                                                     |
|      | $\{1, 3, 5, \dots, 100\}$                                                                                                                 |
|      | $\{0, 5, 10, \dots\}$                                                                                                                     |
|      | {even numbers greater than 3}                                                                                                             |
|      | $\{x: x \text{ is an integer, } x > 100\}$                                                                                                |
| 5.   | $\{x: x \text{ is an integer, } 0 < x < 80\}$                                                                                             |

| 3.<br>4. | $\{0, 5, 10,\}$<br>$\{\text{even numbers greater than 3}\}$<br>$\{x: x \text{ is an integer, } x > 100\}$<br>$\{x: x \text{ is an integer, } 0 < x < 80\}$ |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |
|          |                                                                                                                                                            |

| Exercise 7 |      | Date: |  |
|------------|------|-------|--|
|            | <br> |       |  |

Find the possible Universal sets for each of the following.

- 1. {Togo, Zambia, Niger, Nigeria}
- 2. {lion, tiger, leopard, fox}
- 3. {February, March, June, December}
- 4. {1, 3, 5, ..., 101}
- 5. {2, 4, 6, ...}

| <br> |      |
|------|------|
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |

### Exercise 8 Date:.....

Identify unit sets from the following

- 1.  $\{x: x 3 = 0\}$
- 2.  $\{x: x \text{ is a quadrilateral}\}$
- 3.  $\{x: x \text{ is a factor of } 6\}$
- 4.  $\{x: x \text{ is an even factor of } 30\}$
- $5. \ \left\{ x : \frac{x-4}{2} = 3 \right\}$

| <br> |      |  |
|------|------|--|
|      |      |  |
|      |      |  |
| <br> | <br> |  |

#### **CARDINALITY OF A SET**

The cardinality of any set **A** is the number of elements in the set **A**.

A synonym for cardinality is the cardinal number. The cardinality of, say, set A, is denoted by the symbol n(A), or |A|, or sometimes #A, and read as "the number of elements in set A".

i.e. 
$$A = \{a, b, c, d, e\}$$
 :  $n(A) = 5$ 

#### **EQUAL SETS**

Two sets A and B are said to be equal if A and B have the same elements, not necessarily listed in order. i.e. if  $A = \{a, b, c\}$  and  $B = \{b, a, c\}$ 

Clearly A = B since A and B have the same elements.

### **EQUIVALENT SETS**

Two sets A and B are said to be equivalent if they contain the same number of elements. Equivalent sets are denoted by " $\Leftrightarrow$ ", that is, if set A is equivalent to set B,

we write  $\mathbf{A} \Leftrightarrow \mathbf{B}$ .

For example, if  $A = \{1, 2, 3\}$  and  $B = \{a, b, c\}$ , then A is equivalent to B since n(A) = n(B) = 3.

#### NOTE:

All equal sets are equivalent sets but not all equivalent sets are equal sets.

#### **SUBSETS**

Set A is called a subset of a set B if every member of set A is a member of set B. This relationship is written as  $A \subseteq B$  and may also be read as "A is contained in B". We may also write  $A \subseteq B$  as  $B \supseteq A$  and read as "B contains A", or "B is a superset of A". If set A is not a subset of B, we write  $A \nsubseteq B$ .

If  $A \subseteq B$  and  $A \ne B$ , we sometimes write  $A \subseteq B$  and say A is a proper subset of B.

In other words, if every element in **A** is an element in **B**, and also **B** has at least 1 other element which is not in **A**, then **A** is called "the proper subset" of **B**.

If **A** is a proper subset of **B**, we write  $A \subset B$  or  $B \supset A$ .

#### NOTE:

- (i)  $A = \{a, b, c, d\}$  and  $B = \{a, b, c, d\}$ clearly A = B and we say A is a subset of B written  $A \subseteq B$ .
- (ii) If  $A = \{a, b, c\}$  and  $B = \{a, b, c, d, e\}$  clearly  $A \neq B$  and we say A is a proper subset of B written  $A \subset B$ .
- (iii) Any set is a subset of itself.
- (iv) Ø i.e. the empty set is a subset of any set.
- (v) A finite set with n elements has  $2^n$  subsets.

| Exercise 9 Date:                                                                   |
|------------------------------------------------------------------------------------|
| Exercise 10 Date:                                                                  |
| Exercise 11 Date:                                                                  |
| (a) Find<br>(i) n(U) (ii) n(A) (iii) n(B)                                          |
| (b) True or False?<br>(i) $A \subseteq U$ (ii) $A \subseteq B$ (iii) $B \subset A$ |
| (c) True or False?<br>(i) $5 \in A$ (ii) $5 \notin B$                              |
| (d) If $C = \left\{4, 7, 11, 9, \frac{x-1}{2}\right\}$ and $A = C$ , find $x$ .    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |

| Exercise 12 Date: | VENN DIAGRAM A Venn diagram is a way of representing sets visually. These provide useful method of displacing relations between subsets of a given set. The fixed set is called the universal set for the subsets involved. The universal set is composed of all possible elements in the field of discussion. The universal set is represented by interior of a rectangle and subsets of the universal sets are represented by regions. The English mathematician John Venn (1834 – 1923) developed it and was named after him as Venn Diagrams. |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | In particular, given $A \subset B \subset U$ , this can be represented in a Venn Diagram as                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### **Operation on Sets**

An operation on sets is a rule by which, with one, two or more given sets, we associate a unique set. The three operations on sets are union (U), intersection  $(\cap)$  and complement (')

#### 1. Intersection of sets

The intersection of two sets A and B is defined to be the set of all objects that are common to both A and B. It is denoted by  $A \cap B$  which is read as "A intersection B".

In particular, if 
$$A = \{a, b, c, d\}$$
 and  $B = \{a, c, d, f, g\}$  then  $A \cap B = \{a, c, d\}$ 

The shaded regions show the intersection between sets A and B.





### Extension to three or more sets

 $A \cap B \cap C$  is defined to be the set of objects that are common to A, B and C. The order in which the sets appear does not matter.

Also  $(A \cap B) \cap C = A \cap (B \cap C)$ . This equation is called the associative property of intersection.

#### 2. Union of Sets

The union of two sets A, B is defined to be the set consisting of all objects that are members of A or of B or of both. The set is denoted by  $A \cup B$  which is read as "A union B".

In particular, if 
$$A = \{1, 3, 5, 7, 9\} \text{ and } B = \{2, 4, 6, 8, 10\}$$
 then 
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

The shaded regions show the union between the set A and B.







 $A \cup B$ 

### Extension to three or more sets

 $A \cup B \cup C$  is defined to be the set consisting of all the objects that are members of at least one of the sets A, B, C. The order in which the sets appear does not matter.

e.g.  $A \cup B \cup C = B \cup A \cup C$  etc. Also  $(A \cup B) \cup C = A \cup (B \cup C)$ . This equation is called the **associative property** of union.

### 3. Disjoint Sets

When  $A \cap B = \emptyset$ , i.e. when A, B have no elements common, we say that A, B are disjoint or non-intersecting. In particular, if  $A = \{2, 4, 6, 8\}$  and  $B = \{1, 3, 5, 7\}$ . Clearly  $A \cap B = \emptyset$  and we say set A and set B are disjoint sets.



From the Venn diagram above, A and B does not intersect so we say A and B are disjoint sets.

### 4. Complement of Sets

If  $A \subset B$ , We define the complement of A with respect to B (or in B) to be the set of all elements of B that are not members of A. It is denoted by A' which is read as "A dashed" or "A prime".

In particular, if  $B = \{1, 2, 3, 4, 5\}$  and  $A = \{1, 2, \}$  then  $A' = \{3, 4, 5\}$ .

In the Venn Diagram in Fig. 1 the complement of set A is represented by the shaded region.



Here set B = U

The complement of a set A is the set of all the elements in the universal set that are not in set A.

### Example 2

If  $U = \{1, 2, 3, ..., 12\}$   $P = \{1, 5, 7, 10\}, Q = \{1, 2, 7, 8, 10\}.$ Find the following sets. (a) P' (e)  $P' \cup P$ 

- (b) *Q'*
- (f)  $Q \cap Q'$
- (c)  $(P \cup Q)'$
- (g)  $P \cup Q'$
- (d)  $(P \cap Q)'$
- (h)  $P' \cap Q$

#### Solution...

- (a)  $P' = \{2, 3, 4, 6, 8, 9, 10, 11, 12\}$
- (b)  $Q' = \{3, 4, 5, 6, 9, 11, 12\}$
- (c)  $P \cup Q = \{1, 2, 5, 7, 8, 10\}$  $\therefore (P \cup Q)' = \{3, 4, 6, 9, 11, 12\}$
- (d)  $P \cap Q = \{1, 7, 10\}$  $\therefore (P \cap Q)' = \{2, 3, 4, 5, 6, 8, 9, 11, 12\}$
- (e)  $P' \cup P = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- (f)  $Q \cap Q' = \emptyset$
- (g)  $P \cup Q' = \{1, 3, 4, 5, 6, 7, 9, 10, 11, 12\}$
- (h)  $P' \cap Q = \{2, 8, 10\}$

#### **POWER SETS**

The power set is the set of all possible subsets of an original set. The power set is denoted by  $\mathcal{P}(A)$ . The number of elements in a power set is  $2^n$ , where n is the number of elements in the set.

### Example 3

Let  $A = \{a, b, c\}$ . Find the power set of A.

#### Solution...

$$\mathcal{P}(\mathbf{A}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Exercise 13 Date:......

If  $U = \{1, 2, 3, ..., 12\}$ ,  $A = \{2, 3, 4, 7, 9, 11\}$  and  $B = \{4, 11\}$ .

Find

- (i) A'
- (iv)  $A' \cup B'$
- (ii) B'
- (v) n(A')
- (iii)  $A' \cap B'$  (vi) n(B')

|                   | Exercise 15 Date: |
|-------------------|-------------------|
|                   |                   |
| Exercise 14 Date: |                   |
|                   | Exercise 16 Date: |

| 2. The universal set U is the set of all integers $P$ , $Q$ and $R$ are subsets of U defined by $P = \{x: x \le 2\}$ , $Q = \{x: -7 < x < 15\}$ , $R = \{x: -2 \le x < 19\}$ . Find  (a) $P \cap Q$ (c) $n(P \cap (Q \cup R'))$ (b) $P \cap (Q \cup R')$ | Exercise 17  1.  X and Y are subsets of   U such that $U = \{10, 11, 12,, 20\},$ $X = \{x: 10 \le x \le 15\}$ and $Y = \{\text{even numbers} < 18\}.$ Find   (a) $X \cap Y$ (c) $n(X' \cap Y)$ (b) $X' \cap Y$ (d) $Y \cup (X' \cap Y')$                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                          | <ul> <li>Given that A, B, C are subsets of the universal set μ of real numbers such that:</li> <li>A = {1, 2,, 16}, B = {x: 0 &lt; x &lt; 16}, where x is an odd integer.</li> <li>C = {p: p &lt; 16}, where p is a prime.</li> <li>(a) Find B ∩ C</li> <li>(b) Find (A ∩ B)'</li> </ul> |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
| <del></del>                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
| <del></del>                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |

| T 1 10 D :                                                    |  |
|---------------------------------------------------------------|--|
| Exercise 18 Date:                                             |  |
| 1. Given $A = \{2, 4, 6, 8\}, B = \{2, 3, 7, 9\}$ and         |  |
| $C = \{x: 3 < x < 9\}$ are subsets of the                     |  |
| universal set $U = \{2, 3, 4, 5, 6, 7, 8, 9\}$ .              |  |
| Find                                                          |  |
| (a) $A \cap (B' \cap C')$                                     |  |
| (b) $(A \cup B) \cap (B \cup C)$                              |  |
|                                                               |  |
| 2.                                                            |  |
| (a) If $P = \{1, 2, 3, 4\}$ , write down all the              |  |
| subsets of <i>P</i> which have exactly two                    |  |
| elements.                                                     |  |
| (b) $A = \{\text{prime numbers less than 15}\}$               |  |
| $B = \{\text{even numbers less than 15}\}$                    |  |
| $C = \{x: 3 \le x < 12, \text{ where } x \text{ is an } 13\}$ |  |
|                                                               |  |
| integer} are subsets of the universal                         |  |
| set $U = \{x: 1 \le x \le 14\}$<br>List the element of        |  |
|                                                               |  |
| (i) $A \cap C$ (iii) $(A \cup B)' \cap C$                     |  |
| (ii) $B \cap C$                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |

| Exercise 19 Date:                                           |  |
|-------------------------------------------------------------|--|
| 1. The sets $A = \{, -6, -4, -2, 0, 2, 4, 6,\}$             |  |
|                                                             |  |
| $B = \{0 \le x \le 9\} \text{ and }$                        |  |
| $C = \{x: -4 < x \le 0\}$ are subsets of $\mathbb{Z}$ , the |  |
| set of integers.                                            |  |
| 9                                                           |  |
| (a)                                                         |  |
| (i) Describe the members of the set                         |  |
| A', where $A'$ is the complement                            |  |
| of A.                                                       |  |
|                                                             |  |
| (ii) Find $A' \cap B$ .                                     |  |
|                                                             |  |
| (b) Represent the sets B and C on a Venn                    |  |
| diagram.                                                    |  |
| diagrain.                                                   |  |
|                                                             |  |
| 2. The set <i>A</i> , <i>B</i> and <i>C</i> are defined as  |  |
| $A = \{1, 3, 5, 7, 9, 11, 13, 15\},\$                       |  |
|                                                             |  |
| $B = \{3, 6, 9, 12, 15\},\$                                 |  |
| $C = \{5, 10, 15, 20, 25\}$                                 |  |
| (a) Draw a Venn diagram to illustrate                       |  |
| the above information.                                      |  |
| the above information.                                      |  |
| a                                                           |  |
| (b) Find                                                    |  |
| (i) B ∩ C                                                   |  |
| (ii) $(A \cup B)' \cap C$                                   |  |
|                                                             |  |
| (iii) the number of elements in                             |  |
| A ∪ B.                                                      |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |

|    | ercise 20                                                                                                        | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | <br> |  |
|----|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|--|
| 1. |                                                                                                                  | iversal set $U = \{2, 3, 5, 7, 5\}$ and $Q = \{5, 7\}$ . Find $P \cap Q$ (ii) $P' \cup Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |      |  |
|    | (b) What i<br>and (ii                                                                                            | s the relationship betwe<br>).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | en (i)         |      |  |
| 2. | and $C$ and $A = \{n \\ B = \{n \\ C = \{n \} \}$                                                                | $\{1, 2, 3,, 19, 20\}$ and $A$ are subsets of $\cup$ such that nultiples of five $\{$ nultiples of four $\}$ nultiples of three $\{$ e elements of $\{$ (ii) $\{$ $\{$ $\}$ $\{$ (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t              |      |  |
|    | (b) Find:<br>(i) A                                                                                               | $\cap B$ (ii) $A \cap C$ (iii) $B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 U <i>C</i>   | <br> |  |
|    |                                                                                                                  | your results in (b), show $(A \cap C) = A \cap (B \cup C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |      |  |
| 3. | and <i>A</i> , <i>B</i> are {2, 3, 5, 7, 8 of <i>S</i> , find the                                                | set of all positive integers and $C$ are the subsets $\{1,5,5\}$ and $\{1,3,6,8\}$ respectine subsets $\cap C$ (ii) $(A \cup C) \cap C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 6},<br>vely, |      |  |
| 4. | $A = \{1, 3, 5\}$ and dash (compleme By writing appropriat (i) $(A \cup A)$ (ii) $(A \cap A)$ (iii) $(A \cup A)$ | $\{3, 3, 4, 5, 6, 7, 8, 9, 10\}$<br>$\{5\}, B = \{2, 4, 6, 8\}, C = \{2, 4$ | <i>C</i> )     |      |  |
|    |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | <br> |  |

| <br>  |
|-------|
|       |
| <br>  |
| <br>  |
|       |
|       |
| <br>  |
|       |
|       |
| <br>  |
| <br>  |
|       |
| <br>  |
| <br>  |
|       |
|       |
| <br>  |
| <br>  |
|       |
| <br>  |
| <br>  |
|       |
|       |
| <br>  |
| <br>  |
|       |
| <br>  |
| <br>  |
| <br>  |
|       |
| <br>  |
| <br>  |
|       |
|       |
| <br>  |
| <br>  |
|       |
| <br>  |
| <br>  |
| <br>  |
|       |
|       |
| <br>  |
|       |
| <br>  |
| <br>, |
| <br>  |
|       |
| <br>  |
| <br>  |
| I     |

|  | Exercise 21 Date:                                                                                                                                                                                                                                                                                                                     |  |  |  |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|  | 2. Given that the universal set $U = \{1, 2, 3, 4,, 10\},\ P = \{1, 2, 3, 4, 6, 10\} \text{ and } Q = \{2, 3, 6, 9\},\ \text{show that } (P \cup Q)' = P' \cap Q'.$                                                                                                                                                                   |  |  |  |
|  | 3. $A = \{1, 2, 3, 4, 6\}$ and $B = \{1, 2, 3, 6, 9, 18\}$ are subsets of the universal set $\mu = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ . List the elements of (i) $A' \cap B$ (ii) $(A' \cap B)'$                                                                                                                                       |  |  |  |
|  | <ul> <li>4. The sets P = {multiples of 3},</li> <li>Q = {factors of 72} and R = {even numbers} are subsets of U = {10 ≤ x ≤ 36}.</li> <li>(a) List the elements of P, Q and R</li> <li>(b) Find</li> <li>(i) P ∩ Q</li> <li>(ii) Q ∩ R</li> <li>(iii) P ∩ R</li> <li>(c) What is the relationship between P ∩ Q and Q ∩ R?</li> </ul> |  |  |  |
|  | <ul> <li>5. U = {1,2,3,,10}, A = {1,2,3,4,5}, B = {2,3,5} and C = {6,8,10}.</li> <li>i) Given that the Venn diagram represents the sets above, copy and fill in the elements.</li> </ul>                                                                                                                                              |  |  |  |
|  | $ \begin{array}{c c}  & A \\ \hline  & 5 \\  & 9 \\ \hline  & 6,10 \end{array} $                                                                                                                                                                                                                                                      |  |  |  |
|  | ii) Find $A \cap C$ iii) Find $A \cap B'$                                                                                                                                                                                                                                                                                             |  |  |  |
|  |                                                                                                                                                                                                                                                                                                                                       |  |  |  |

| <br> |
|------|
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

#### Exercise 22

1. The universal set U is the set of all integers and subsets P, Q, R of U are given by

Date:.....

$$P = \{x : x \le 0\},\$$

$$Q = {..., 5, -3, -1, 1, 3, 5, ...},$$

$$R = \{x: -2 \le x \le 7\}$$

- (a) Find  $Q \cap R$
- (b) Find R' where R' is the complement of R with respect to U.
- (c) Find  $P' \cap R'$
- (d) List the members of  $(P \cap Q)'$ .
- 2. The universal set U is the set of all integers. A, B and C are subsets of U defined as follows

$$A = {..., -6, -4, -2, 0, 2, 4, 6, ...},$$

$$B = \{x: 0 \le x \le 9\}$$

$$C = \{x: -4 \le x \le 10\}$$

- (a) Write down set A', where A' is the complement of A with respect to U.
- (b) Find  $B \cap C$
- (c) Find the members of the sets  $B \cup C$ ,  $A \cap B$  and  $B \cap C$  and hence show that  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 3. A, B and C are subsets of the universal set U such that  $U = \{0, 1, 2, 3, ..., 12\}$ ;

$$A = \{x: 0 \le x \le 7\}$$

$$B = \{4, 6, 8, 10, 12\}$$

 $C = \{1 < y < 8\}$ , where y is a prime number.

- (a) Draw a Venn diagram to illustrate the information given above.
- (b) Find

(i) 
$$(B \cup C)'$$
 (ii)  $A' \cap B \cap C$ 

4.



The Venn diagram represents three subsets A, B and C of the universal set U. Copy the Venn diagram, shade and indicate the regions respectively.

- (i)  $A \cap B' \cap C$
- (ii)  $A' \cap B \cap C'$

| <br> |
|------|
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
| _    |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |

| <del></del> |             |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             | <del></del> |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| <del></del> |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |

| <br> |
|------|
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |

#### Exercise 23

#### Date:....

- 1. If  $A = \{x \in \mathbb{R}: 0 < x \le 3\}$  and  $B = \{x \in \mathbb{R}: x \le 1 \text{ or } x > 4\}$ . Express in simplest form.
  - (i)  $A \cap B$
- (iii)  $A \cup B$

- 2.
- (a) If  $A = \{x \in \mathbb{R}: 0 < x < 2\}$  and  $B = \{x \in \mathbb{R}: 1 \le x < 4\}$ , find, in simplest form,
  - (i)  $A \cap B$  (ii)  $A' \cap B$  (iii)  $A' \cup B'$
- (b) If  $C = \{x \in \mathbb{R}: 0 \le x \le 2 \text{ or } x \ge 3\}$ , find, in simplest form  $(A' \cup B') \cap C$ .
- 3. The sets  $A = \{1, 3, 5, 7, 9, 11\}$ ,  $B = \{2, 3, 5, 7, 11, 15\}$ ,  $C = \{3, 6, 9, 12, 15\}$  are subsets of  $U = \{1, 2, 3, ..., 15\}$ .
  - (a) Draw a Venn diagram to illustrate the given information.
  - (b) Use your diagram to find
    - i)  $C \cap A'$
- ii)  $A' \cap (B \cup C)$

- 4.
- ( $\alpha$ ) A = {1, 2, 5, 7} and B = {1, 3, 6, 7} are subsets of the universal set U = {1, 2, 3, ..., 10}. Find
  - i)  $\hat{A}'$
  - ii)  $(A \cap B)'$
  - iii)  $(A \cup B)'$
  - iv) the subsets of *B* each of which has
    - (a) two elements
    - (b) three elements.
- 5. List the elements of the sets
  - (i)  $\{x \in \mathbb{R}: x^3 = x\} \cap \{x \in \mathbb{R}: x^3 + 3x^2 + 2x = 0\}$
  - (ii)  $\{x \in \mathbb{Q}: x^2 < 1\} \cap \{x \in \mathbb{Q}: 3x \in \mathbb{Z}\}$
  - (iii)  $\{x \in \mathbb{Z}: x^2 < 50\} \cap \{x \in \mathbb{Z}: \frac{1}{2}(x-1) \in \mathbb{Z}\}$
- 6. The universal set U is defined as follows:

 $U = \{x: x \in \mathbb{N}, 2 < x < 12\}$ . The set M and R are subsets of U such that

 $M = \{odd numbers\}$ 

 $R = \{square numbers\}$ 

- (i) Find the number of the subset of M
- (ii) List the members of the subset of *R*

- (iii) Draw a Venn diagram that represents the relationship among the defined subsets of U
- 7. From the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, list the following subsets:
  - (i) The subset of even numbers
  - (ii) The subset of prime numbers
  - (iii) The complement of the subset of perfect squares
  - (iv) The subset of members of the form 4n 1,  $n \in \mathbb{N}$
  - (v) The subset consisting of numbers that are square roots of members of the set.
- 8.
- (a) Determine which of the following sets are equal to the empty set:
  - (i)  $\{x \in \mathbb{R}: x^2 = 9 \land 2x = 4\}$
  - (ii)  $\{x \in \mathbb{R}: x \neq x\}$
  - (iii)  $\{x \in \mathbb{R}: x + 2 = 2\}$
  - (iv)  $\{x \in \mathbb{R}: 1 < x < 2\}$
  - (v)  $\{x \in \mathbb{Z}: 1 < x < 2\}$
- (b) Given that U = {1,2,3,4,5,6,7,8,9, 10,11,12,13,14,15,20,30,40,60} and A = {factors of 20}, B = {factors of 40} and C = {factors of 100} are subsets of
  - (α) Draw a Venn diagram to illustrate the above information.
  - $(\beta)$  Use your Venn diagram to find the members of the following sets:
    - (i)  $A \cap B \cap C$
    - (ii)  $A \cap B'$
    - (iii)  $A' \cap B \cap C$
    - (iv)  $(A' \cap C) \cap (A \cup B)$

20

 $(\gamma)$  State  $n(A \cup B)'$ .

PROBLEM – SOLVING USING VENN DIAGRAMS
TWO SET PROBLEMS



n(M) = a + b n(M only) = a n(N) = b + c n(N only) = c  $n(M \cap N) = b$   $n(M \cup N)' = d$  n(U) = a + b + c + dFor any two intersecting sets  $n(U) = n(M) + n(N) - n(M \cap N) + n(M \cup N)'.$ 

### Example 4

The Venn diagram show the results of an interview of students of Stevkon's Junior High School.

 $M = \{\text{students who like Mathematics}\}\$ and  $N = \{\text{students who like Science}\}\$ .



- (a) How many students were interviewed?
- (b) How many students like Mathematics?
- (c) How many students like Science?
- (d) How many students like both Mathematics and Science?
- (e) How many students like only one subject?
- (f) How many students like Mathematics only?
- (g) How many students like at least one subject?
- (h) How many students like none of the two subjects?

#### Solution...

(a) The number of students interviewed = 9 + 6 + 7 + 3 = 25

- (b) The number of students that like Mathematics = 9 + 6 = 15
- (c) The number of students that like Science = 6 + 7 = 13
- (d) The number of students that like both Mathematics and Science = 6
- (e) The number of students that like only one subject = 9 + 7 = 16
- (f) The number of students who like Mathematics only = 9
- (g) The number of students that like at least one subject = 9 + 6 + 7 = 22
- (h) The number of students who like none of the two subjects = 3

### Example 5

Out of 30 students applying for the position of a school prefect, 17 offer English, 15 offer French and 4 offer neither English nor French. How many of them offer

- (i) Only English?
- (ii) Both English and French?

#### Solution...

Let U = {students}

 $E = \{\text{students who offer English}\}\$ 

 $F = \{\text{students who offer French}\}\$ 

n(U) = 30

 $n(E \cup F)' = 4$ 

n(E) = 17

 $n(E \cap F) = x$ 

n(F) = 15



$$n(U) = 30$$

$$\Rightarrow 17 - x + x + 15 - x + 4 = 30$$

$$36 - x = 30$$

$$-x = 30 - 36$$

$$-x = -6$$

$$\therefore x = 6$$



- (i) 11 students offer only English
- (ii) 6 students offer both English and French.

Now consider two finite sets *A* and *B*, in a universal set U.



Let 
$$n(A) = p$$
  
 $n(B) = q$   
 $n(A \cap B) = r$ 

From the Venn diagram, we have 
$$n(A \cup B) = (p-r) + r + (q-r)$$
  
=  $p + q - r$   
=  $n(A) + n(B) - n(A \cap B)$ 

Hence

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

### Example 6

A and B are subsets of a universal set U and n(A) = 23, n(B) = 14,  $n(A \cup B) = 29$ . Find  $n(A \cap B)$ .

#### Solution...

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
  

$$32 = 23 + 14 - n(A \cap B)$$
  

$$n(A \cap B) = 23 + 14 - 32$$
  

$$= 5$$

### Exercise 24 Date:.....

- 1. M and N are two intersecting sets. If n(M) = 20, n(N) = 30 and  $n(M \cup N) = 40$ . Find  $n(M \cap N)$ .
- 2. In the Venn diagram, n(P) = n(Q). Find the value of x.



3. In the Venn diagram below, n(A) = 2n(B).



Find

i) *x* 

ii) n(B')

4. The Venn diagram below shows the number of students who study History and French in a class of 30 students.

 $U = \{\text{students in the class}\}\$ 

 $H = \{\text{students who study History}\}\$ 

 $F = \{\text{students who study French}\}\$ 



- (i) Write an express, in *x* in its simplest form, for the total number of students in class.
- (ii) State whether the following relations are True or False.
  - $H \cup F = U$
  - $H \cap F' = \emptyset$
- (iii) Determine the number of students who study both History and French.
- 5. In a survey of 39 students, it was found that

18 can ride a bicycle

15 can drive a car

*x* can ride a bicycle and drive a car

3x can do neither

*B* is set of students in the survey who can ride a bicycle, and *C* the set of students who can drive a car.

(i) Copy and complete the Venn diagram to represent the information.



| _           |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exc | ercise 25 Date:                                                                            |  |
|-----|--------------------------------------------------------------------------------------------|--|
| 1.  | In a class of 50 students, 30 offer                                                        |  |
|     | Economics, 17 offer Government and 7 offer neither Economics nor                           |  |
|     | Government. How many students offer                                                        |  |
|     | both subjects?                                                                             |  |
| 2.  | In a class of 31 students, 16 play                                                         |  |
|     | football, 12 play table – tennis and 5 play both games. Find the number of                 |  |
|     | students who play (a) only one of the games (b) at least one of the games                  |  |
|     |                                                                                            |  |
|     | (c) none of the games                                                                      |  |
| 3.  | In a class, the number of students                                                         |  |
| 0.  | studying French or History is 40.                                                          |  |
|     | Twenty study both subjects and the number who study French is 10 more                      |  |
|     | than the number who study History.                                                         |  |
|     | <ul><li>(a) How many study French?</li><li>(b) How many study History?</li></ul>           |  |
|     |                                                                                            |  |
| 4.  | In a hotel breakfast menu is a choice between yam (Y) or plantain (P) or                   |  |
|     | both.                                                                                      |  |
|     | $P \qquad \qquad Y \qquad \qquad Y \qquad \qquad (2x+1)(x)(x-2)^2$                         |  |
|     |                                                                                            |  |
|     | $ \setminus \lor \lor \bot $                                                               |  |
|     |                                                                                            |  |
|     | The Venn diagram shows the choices                                                         |  |
|     | made by 25 guests of the Hotel.                                                            |  |
|     | <ul><li>(a) Find the value of x</li><li>(b) What is the probability that a guest</li></ul> |  |
|     | chosen at random chose only one of                                                         |  |
|     | the two?                                                                                   |  |
|     |                                                                                            |  |
|     |                                                                                            |  |
|     |                                                                                            |  |
|     |                                                                                            |  |
|     |                                                                                            |  |
|     |                                                                                            |  |
|     |                                                                                            |  |
|     |                                                                                            |  |
|     | <del>-</del>                                                                               |  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |

| <br>Exercise 26 Date:                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>In a class of 45 students, 32 offered Physics (P), 28 offered Government (G) and 12 did not offer any two subjects.</li> <li>(a) Draw a Venn diagram to represent the information.</li> <li>(b) How many students offered both Physics and Government?</li> <li>(c) What is n(P ∪ G)?</li> <li>Out of 30 candidates applying for a post,</li> </ol> |
| 2. Out of 30 candidates applying for a post, 17 have degrees, 15 have diplomas and 4 neither degree nor diploma. How many of them have both?                                                                                                                                                                                                                 |
| 3. A number of tourists were interviewed on their choice of means of travel. Two – thirds said that they travel by road, $\frac{13}{30}$ by air and $\frac{4}{15}$ by both road and air. If 20                                                                                                                                                               |
| tourists did not travel by either air or<br>road,<br>(i) Represent the information on a<br>Venn diagram;<br>(ii) How many tourists                                                                                                                                                                                                                           |
| ( $\alpha$ ) were interviewed?<br>( $\beta$ ) travelled by air only?                                                                                                                                                                                                                                                                                         |
| <br>                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                              |
| <br>                                                                                                                                                                                                                                                                                                                                                         |
| <br>                                                                                                                                                                                                                                                                                                                                                         |
| <br>                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                              |
| <br>                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                              |

|             | <del></del> |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| <del></del> |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| <del></del> |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             | 1           |

| <br> |
|------|
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| •    |

#### Exercise 27

- Date:.... 1. Sets A and B are such that n(A) = 11, n(B) = 13 and  $n(A \cup B) = 18$ . Find  $n(A \cap B)$
- 2. In a class of 30 students, 17 are studying politics, 14 are studying Economics and 10 are studying both of these subjects.

Illustrate this information using a Venn diagram.

Find the number of student studying

- (a) neither of these subjects
- (b) exactly one of these subjects.
- 3. A group of 40 students were asked whether they like Mathematics (M) or French (*F*). The number liking both Mathematics and French was three times the number liking only Mathematics. Adding 3 to the number liking only Mathematics and doubling the answer equals the number of students liking only French. 4 said they did not like any of the subjects.
  - (a) Draw a Venn diagram to represent this information.
  - (b) Calculate  $n(M \cap F)$
  - (c) Calculate  $n(M \cap F')$
  - (d) Calculate  $n(M' \cap F)$
- 4. A survey of the reading habits of 130 students showed that 30 read both Comics and Novels, 10 read neither Comics nor Novels and twice as many students read Comics as read Novels.
  - (a) How many students read Novels?
  - (b) How many read Comics?
  - (c) How many read only Comics?

5.



The Venn diagram above represents the sets

 $U = \{\text{homes in a certain town}\}\$ 

C = { homes with computer}

D = {homes with a dish washer}

It is given that

$$n(C \cap D) = k$$
  
 $n(C) = 7 \times n(C \cap D)$   
 $n(D) = 4 \times n(C \cap D)$  and

$$n(U) = 6 \times n(C' \cap D')$$

- i) Copy the Venn diagram above and insert, in each of its four regions, the number, in terms of k, of homes represented by that region.
- ii) Given that there are 16500 homes which do not have both a computer and a dish washer, calculate the number of homes in the town.
- 6. The Universal set U and sets P and Q are such that n(U) = 15, n(P) = 13 and  $n(P \cap Q) = 4$ , find
  - (i) n(Q)
  - (ii)  $n((P \cup Q)')$
  - (iii)  $n(P \cap Q')$
- 7. Out of 120 customers in a shop, 45 bought both bags and shoes. If 11 customers bought shoes than bags,
  - (a) Illustrate this information on a Venn diagram.
  - (b) Find the number of customers who bought shoes.
  - (c) Find the probability that a customer bought bags.
- 8. Given U = {students in class}

 $F = \{\text{students who like football}\}\$ 

 $B = \{\text{students who like basketball}\}\$ 

$$n(U) = 24$$

$$n(F \cap B) = 12$$

$$n(F \text{ only}) = 7$$

$$n(B \text{ only}) = 2$$

- Draw a Venn diagram to represents this information.
- (ii) How many students do not like either sport?
- (iii) Find the value of  $n(F \cup B)$
- (iv) Find the value of  $n(F' \cap B)$
- A students from the class is selected at random. What is the probability that this student likes basketball?
- (vi) A student who likes football is selected at random. What is the probability that this student likes basketball?

- 9. A team of 24 swimmers took part in a competition. 15 competed in free style, 11 competed in back stroke, and 6 competed in both of these strokes. Display this information on a Venn diagram, and hence determine the number of swimmers who competed in:
  - (a) back stroke but not free style
  - (b) at least one of these strokes
  - (c) freestyle but not backstroke
  - (d) neither stroke
  - (e) exactly one of these strokes.

### THREE - SET PROBLEMS

### Example 7

The Venn diagram below shows the result of interviewing some students in a certain school to as which subject they like.

*M* = {students who like Mathematics}

 $P = \{\text{students who like Physics}\}\$ 

 $F = \{\text{students who like French}\}\$ 



- (a) How many students were interviewed?
- (b) How many students like French?
- (c) How many students like Mathematics only?
- (d) How many students like Mathematics and French?
- (e) How many students like Mathematics and French only?
- (f) How many students like only one subject?
- (g) How many students like only two subjects?
- (h) How many students like all three subjects?

- (i) How many students like at least two subjects?
- (j) How many students like Mathematics or French but not Physics?
- (k) How many students like Mathematics or Physics?

#### Solution...

- (a) The number of students interviewed = a + b + c + d + e + f + g
- (b) The number of students who like French = d + e + f + g
- (c) The number of students who like Mathematics only = a
- (d) The number of students who like Mathematics and French = a + b + d + e + f + g
- (e) The number of students who like Mathematics and French only = *d*
- (f) The number of students who like only one subject = a + c + g
- (g) The number of students who like only two subjects = d + b + f
- (h) The number of students who like all three subjects = e
- (i) The number of students who like at least two subjects = b + d + f + e
- (j) The number of students who like Mathematics or French but not Physics = a + d + g
- (k) The number of students who like Mathematics or Physics = a + b + e + d + c + f

Exercise 28

Date:....

1.



- (a) Use set notation to complete the statements for the Venn diagram above
  - (i) *c* ... ... X
  - (ii) ... ...  $= \{a, m, e\}$
  - (iii)  $Y \cap Z = \dots$
- (b) List the elements of  $(X \cup Y \cup Z)'$
- (c) Find  $n(X' \cap Z)$
- 2. P, Q and R are sets such that  $U = P \cup Q \cup R$



- (i) Find x, given that n(P) = n(Q)
- (ii) Find y, given that  $n((P \cup Q)') = n(P \cap Q)$
- (iii) Find n(Q)

3.



The Venn diagram shows the number of elements in sets *A*, *B* and *C*.

(a)  $n(A \cup B \cup C) = 74$ Find x.

- (b) n(U) = 100 Find *y*.
- (c) Find the value of  $n((A \cup B)' \cap C)$ .
- 4. In the Venn diagram, P, Q and R are subsets of the universal set U. If n(U) = 125, find;
  - (i) the value of x
  - (ii)  $n(P \cup Q \cap R')$



- 5. If P, Q and R are sets such that n(P) = 20, n(Q) = 16, n(R) = 21,  $n(P \cap Q) = 7$ ,  $n(P \cap R) = 8$ ,  $n(Q \cap R) = 5$  and  $n(P \cap Q \cap R) = 3$ .
  - (a) Represent this information on a Venn diagram;
  - (b) Find;
    - (i)  $n(P \cup Q \cup R)$
    - (ii) The probability of  $((P \cup Q)' \cap R)$

| <br> |
|------|
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |

32

U

| <del>-</del> |  |
|--------------|--|
| <del>-</del> |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

|                                                                                                                                                                                                                                                                                                                   | Y M R R S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                   | <ul> <li>U = {farmers}</li> <li>R = {rice farmers}</li> <li>M = {maize farmers}</li> <li>Y = {yam farmers}</li> <li>(a) How many farmers grow only one crop?</li> <li>(b) How many grow exactly two crops?</li> <li>(c) How many grow all three crops?</li> </ul>    |
| Exercise 29 Date:                                                                                                                                                                                                                                                                                                 | <ul> <li>(d) How many grow only yam or only maize?</li> <li>(e) How many grow maize but not rice?</li> <li>(f) How many grow yam and rice?</li> <li>(g) How many grow rice and maize not yam?</li> <li>(h) How many grow at least one of the three crops?</li> </ul> |
| <ul> <li>(a) Indistract the information of a venindiagram.</li> <li>(b) Using your Venn diagram, find the number of students who play at least two games.</li> <li>(c) What is the probability that a student chosen at random from the class does not play any of the three games?</li> </ul>                    |                                                                                                                                                                                                                                                                      |
| 2. In a class of 32 students, 18 offer Chemistry, 16 offer Physics and 22 offer Mathematics, 6 offer all three subjects, 3 offer Chemistry and Physics only and 5 offer Physics only. Each student offers at least one subject. Find the number of students who offer  (a) Chemistry only;  (b) only one subject; |                                                                                                                                                                                                                                                                      |
| <ul> <li>(c) only two subjects.</li> <li>(d) at least two subjects.</li> </ul> 3. The number of farmers growing rice, maize and yams is illustrated in the Venn                                                                                                                                                   |                                                                                                                                                                                                                                                                      |

diagram below.

| <br> |
|------|
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |

| <del></del> |             |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             | <del></del> |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| <del></del> |             |
|             |             |
|             |             |
|             |             |
|             |             |
| <del></del> |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |

|                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             | <ul><li>(b) go to School only.</li><li>(c) exactly two of the activities.</li><li>(d) at least two of the activities.</li></ul>                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                              | 3.                                                                                                                                          | In an examination each of 1000 students sat for Biology, Chemistry and Physics. All passed at least one of the three subjects. 600 pass Biology, 500 passed Chemistry and 290 passed Physics. 175 passed both Biology and Chemistry, 150 passed both Biology and Physics, and 120 passed both Chemistry and Physics.  (a) How many students passed exactly one subject?  (b) How many passed exactly two subjects?  (c) How many passed all three subjects? |
|                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1. Mathematics, English and were distributed to 50 s 22 had Mathematics books and 25 Life Skills Mathematics and English Mathematics and Life Skills Mathematics and Life Skills be number of students who (a) all three books; (b) exactly two of the books (c) only Life Skills book                                                                                       | tudents in a class.  bks, 21 English  books, 7 had  h books, 6  cills books and 9  books. Find the  b had  books                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2. 100 members of a common to state the activities the during the day. 38 go to School. 54 go for Fishing. 50 engage in Trading. 10 go to School and also 18 go to School and also 22 go for Fishing and also 22 go for Fishing and also Each of these members bleast one of the activities people who go to School as the number who engage only. Use the information to fi | Fish. — Fish. — So Trade. — So Trade. — So Trade. — So The number of lonly is the same age in Trading — — — — — — — — — — — — — — — — — — — |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| people who (a) undertake all three a                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exercise 31 Date:                                                                                 |
|---------------------------------------------------------------------------------------------------|
| <br>1. In an examination, 60 candidates passed Integrated Science or Mathematics. If 15           |
| <br>passed both subjects and 9 more passed                                                        |
| Mathematics than Integrated Science, find the:                                                    |
| <br>(a) number of candidates who passed in                                                        |
| each subject;                                                                                     |
| <ul><li>(b) probability that a candidate passed<br/>exactly one subject.</li></ul>                |
|                                                                                                   |
| <br>2. In a class of 50 students, 24 like football,                                               |
| <br>21 basketball and 18 cricket. Six like football and basketball only, 3 like                   |
| <br>basketball only, 5 like all the three games                                                   |
| <br>and 14 did <b>not</b> like any of the three                                                   |
| games.                                                                                            |
| <ul><li>(i) Illustrate this information on a Venn diagram.</li></ul>                              |
| <br>(ii) Find the number of students who                                                          |
| <br>like:                                                                                         |
| <br>(a) football and cricket <b>only</b> ;                                                        |
| <br><ul><li>(b) exactly <b>one</b> of the games;</li><li>(c) at least two of the games;</li></ul> |
| (d) exactly two of the games.                                                                     |
|                                                                                                   |
| <br>3. Some students were interviewed to find                                                     |
| <br>out which of the following three sports they liked; football, boxing and volleyball.          |
| <br>70% of the students liked football, 60%                                                       |
| <br>boxing and 45% volleyball. 45% liked                                                          |
| <br>football and boxing, 15% boxing and volleyball, 25% football and volleyball                   |
| and 5% liked all three sports.                                                                    |
| <br>(a) Draw a Venn diagram to illustrate this                                                    |
| <br>information.                                                                                  |
| <br><ul><li>(b) Use your diagram to find the<br/>percentage of students who liked</li></ul>       |
| <br>(i) Football and boxing but not                                                               |
| <br>volleyball                                                                                    |
| (ii) Exactly two sports                                                                           |
| (iii) None of the three sports                                                                    |
| <br>4. In a survey, 74 out of 88 tourist                                                          |
| <br>interviewed said they had visited at least                                                    |
| <br>one of Africa (A), Europe (E) and South<br>America (S). Of these, 19 had visited              |
| <br>Europe and Africa, 30 Europe and South                                                        |
| <br>America, 26 South America and Africa. No                                                      |
| one had visited only Africa, 10 only                                                              |
| <br>Europe, 7 only South America and $x$ had visited all the three continents.                    |
| <br>(a) Draw a Venn diagram to represent                                                          |
| <br>this information.                                                                             |

| (b) Write down a suitable equation in $x$    |  |
|----------------------------------------------|--|
| and find the value of $x$ .                  |  |
| (c) Find                                     |  |
| (i) $n[(E \cap A) \cup S]$                   |  |
| (ii) $n[(E \cup A)' \cap A]$<br>(iii) $n(A)$ |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
| <del></del>                                  |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |

Book 1 **Sets** 41

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

#### Exercise 32 Date:....

- 1. A group of 50 girls were asked which of the three colours red, vellow and green they liked. 5 of them said they liked all three colours, 25 liked red and 22 liked green. 15 liked red and yellow, 12 liked red and green. 4 liked only yellow and 2 liked only green.
  - (a) Illustrate the information on a Venn diagram.
  - (b) How many girls did **not** like any of the three colours?
- 2. A survey of 150 traders in a market shows that 90 of them sell cassava, 70 sell maize and 80 sell yam. Also, 26 sell cassava and maize, 30 sell cassava and yam and 40 sell yam and maize. Each of the traders sells at least one of these crops.
  - (a) Represent the information on a Venn diagram.
  - (b) Find the number of traders who sell all the three food crops.
  - (c) How many of the traders sell one food crop only?
- 3. Out of 95 travelers interviewed, 7 traveled by bus and train only, 3 by train and car only and 8 traveled by all three mans of transport. The number, x, of travelers who traveled by bus only, was equal to the number who traveled by bus and car only. If 47 people traveled by bus and 30 by train:
  - (i) Represent this information in a Venn diagram:
  - (ii) Calculate the
    - ( $\alpha$ ) value of x
    - $(\beta)$  number who traveled by at least two means.
- 4. In a certain class, 22 pupils take one or more of Chemistry, Economics and Government. 12 take Economics (E), 8 take Government (*G*) and 7 take Chemistry (C). Nobody takes Economics and Chemistry and 4 pupils take Economics and Government.
  - (a)
- (i) Using set notation and the letters indicated above, write down the two statements in the last sentence.

- (ii) Draw a Venn diagram to illustrate the information.
- (b) How many pupils take
  - (i) Both Chemistry and Government?
  - (ii) Government only?
- 5. Out of 40 customers in a shop, 25 bought plantain, 16 bought yam and 21 bought corn. Each of the customers bought at least one of the three items. Eight bought both plantain and yam, 11 bought plantain and corn and 6 bought yam and corn.
  - (a)
- (i) Represent the information on a Venn diagram.
- (ii) How many customers bought all the three items?
- (b) What is the probability that a customer selected at random bough
  - either plantain or corn only?
  - (ii) at least two items?
- 6.



- (i) List the elements of  $(A \cap B) \cup C$
- (ii) What is  $n[(A \cup B)' \cap C]$
- 7.



If  $n(P \cup Q \cup R) = 93$ , calculate:

- (a) *x*
- (f)  $n(Q \cap R)$
- (b) n(P)
- (g)  $n(P \cap R)$

- (c) n(Q)
- (h)  $n(R \cup Q)$
- (d) n(R)
- (i)  $n(P \cap Q)'$
- (e)  $n(P \cap Q)$

#### Exercise 33

#### Date:.....

- 1. If  $P = \{n^2 + 1: n = 0, 2, 3\}$  and  $Q = \{n + 1: n = 2, 3, 5\}$ , find
  - (i) n(P)
- (iii) PUQ
- (ii) n(Q)
- (iv)  $n(P \cap Q)$
- 2. From a Universal set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, three subsets defined:
  - $A = \{x : x \text{ is divisible by } 3\}$
  - $B = \{x: x \text{ is a factor of } 18\}$
  - $C = \{x: x \text{ is even and not divisible by 5}\}$ Draw a Venn diagram to show the Universal set and the three subsets.
- 3. If  $A = \{x: -10 < 2(x-2) \le 10\}$  and  $B = \{x: -14 \le 3x 2 < 4\}$  are subset of  $U = \{-5, -4, -3, -2, ..., 10\}$ , find  $n(A' \cap B)$ .
- 4. A, B and C are subsets of the same universal set.
  - (i) Write each of the following statements in words.
    - (a) A ⊄ B
    - (b)  $A \cap C = \emptyset$
  - (ii) Write each of the following statements in set notation.
    - (a) There are three elements in the set A or B or both.
    - (b) *x* is an element of A but it is not an element of C.
- 5.
- (a) On the Venn diagram below, shade the region that represents  $A \cap B'$ .



(b) The universal set U and sets P, Q and R are such that

$$(P \cup Q \cup R) = \emptyset \qquad P' \cap (Q \cap R) = \emptyset$$

$$n(Q \cap R) = 8 \qquad n(P \cap R) = 8$$

$$n(Q) = 15$$

$$n(P \cap Q) = 10$$

$$n(U) = 30$$

Compute the Venn diagram to show this information and state the value of n(R).

- 6.
- (a) Illustrate the statements  $A \subset B$  and  $B \subset C$  using a Venn diagram.
- (b) It is given that the elements of set U are the letters of the alphabet, the elements of set P are the letters in the word MATHS, the elements of set Q are the letters in the word EXAM.
  - (i) Write the following using set notation.The letter h is in the word MATHS.
  - (ii) Write the following using notation.The number of letters occurring in both of the words MATHS and EXAM is two.
  - (iii) List the elements of the set  $P \cap O'$ .
- 7.
  - (a) Let D(n) denotes the set of all factors of the natural numbers n. For example  $D(8) = \{1, 2, 4, 8\}$ .
    - (i) List the elements of D(12), D(15), D(12)  $\cup$  D(15).
    - (ii) State the least value of r such that  $D(12) \cup D(15) = D(r)$ .
    - (b) If F(n) denotes the set of factors of the natural number, including n but excluding 1, find a number p such that  $F(12) \cap F(18) = F(p)$ .

8. 
$$U = \{p, q, r, s, t, u, v, w\}$$
  
 $A = \{r, t, v, w\}$   
 $B = \{q, r, s, u, v\}$   
 $C = \{q, s, u\}$   
Find  
(i)  $n(A \cap B)$  (iv)  $A \cap B'$ 

(ii)  $n(B \cup C)$ 

(v)  $A \cap (B \cap C')$ 

(iii)  $(A \cup B)'$ 

9.  $U = \{x: 1 \le x \le 30\}$ 

 $A = \{x: x \text{ is a multiple of } 4\}$ 

 $B = \{x: x \text{ is a multiple of 3}\}$ 

 $C = \{x : x \text{ is a multiple of } 12\}$ 

- (a) List the elements of the set A
- (b) Find  $n(A \cap B')$
- (c) Write down in set notation an equation involving the three sets A, B and C.

10.

- (a) If  $R = \{\text{rhombuses}\}\$ and  $P = \{\text{parallelograms}\}, \text{ simplify } R \cap P.$
- (b) The sets C and D are such that  $n(C \cup D) = 44$ ,  $n(C \cap D) = 11$  and n(C) = 31. Find the value of n(D).
- 11. If  $U = \{x : \text{is an integer and } 1 \le x \le 10\}$ ,

 $A = \{ prime numbers \},$ 

 $B = \{even numbers\}$  and

 $C = \{\text{multiples of 3}\}, \text{ list members of the }$ sets

- $A \cap B$ (i)
- (ii)  $A \cup B$
- (iii)  $(A \cap C') \cup B'$

12.

- ( $\alpha$ ) U = {x: x is an integer,  $1 \le x \le 100$ }
  - $A = \{x: x \text{ is divisible by } 7\}$
  - $B = \{x: x \text{ is divisible by } 14\}$
  - $C = \{x: x \text{ is divisible by } 21\}$
  - (i) Find
    - (a) n(A)
- (b)  $n(B \cap C)$
- (ii) Represent the three sets on a clearly labelled Venn diagram.
- $(\beta)$  U = {1, 2, 3, 4, 5, 6}

The sets A, B and C each contains two elements and  $A \cup B \cup C = U$ . Given that  $(A \cup B)' = \{1, 2\}$ , write down;

- the set C: (i)
- a possible set A and the (ii) corresponding set B.
- 13.  $U = \{x: x \text{ is an integer. } 10 \le x \le 100\}$ 
  - $A = \{x: x + 7 < 57 < x + 41\}$
  - $B = \{x : \sqrt{x} \text{ is a positive integer}\}\$
  - $C = \{x : x \text{ is a multiple of } 12\}$
  - (a) Find

- (i) n(A)
- (iii)  $n(A \cup C)$
- (ii) n(B')
- (b) List the elements of
  - (i)  $A \cap B$
- (iii)  $B \cap (A \cup C)'$
- (ii)  $A' \cap C$
- (c) List the elements of *x* such that  $x \in B \cup C$  and  $x \notin A$ .
- 14. A, B and C are the three sets and the number of elements are as shown in the Venn diagram below.



The universal set  $U = A \cup B \cup C$ 

- (a) State the value of  $n(B \cup C)'$
- (b) If  $x \in (A \cup B) \cap C$ , find the probability that  $x \in A$
- (c) If n(C) = n(A), find the two possible values of *k*.

15.

- (a)  $U = \{x: x \text{ is an integer and } 30 \le x \le 100\}$ 
  - $A = \{x: x \text{ is divisible by 3}\}$
  - $B = \{x: x \text{ is a perfect square}\}\$
  - $C = \{x : \text{units digit of } x \text{ is } 7\}$ Find

  - (i)  $A \cap B$ (iii)  $n(B \cap C)$
  - (ii)  $n(A \cap C)$
- (b) Given that

 $U = \{p, q, r, s, t, u, v\}$ 

 $A = \{p, q, r, s\}$ 

 $B = \{r, t, u, v\}$ 

 $C = \{r, s, u, v\}$ 

- ( $\alpha$ ) Find  $n(A \cap C)$
- $(\beta)$  List the elements of
  - (i)  $(B \cup C)'$
  - (ii)  $(A \cup C) \cap B$
- 16. Construct a Venn diagram, illustrating the following sets:
  - (a)  $U = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n\}$

$$A = \{a, c, d, e, g, f, h\}$$

$$B = \{b, c, e, f, i, j, m, n\}$$

$$C = \{c, g, h, i, j\}$$

(b)  $U = \{x: x \text{ is a natiral number, } 2 < x \le 12\}$ 

 $P = \{x: x \text{ is an even number}\}$ 

 $Q = \{x: x \text{ is a multiple of 3}\}$ 

 $R = \{x: x \text{ is a prime number}\}\$ 

17.

( $\alpha$ ) Given U = {a, b, c, d, e, f} A = {a, c, d, f} B = {b, c, e} C = {a, d, g}

Find

(a)  $(A \cup B) \cap C$ 

(b)  $A \cup (B \cap C)$ 

(c)  $(A \cup B) \cap (A \cup C)$ 

 $(\beta)$  In the Venn diagram, U is the set of all children in a certain chosen group,

 $A = \{ children in Youth Club A \}$ 

 $B = \{ children in Youth Club B \}$ 



The letters p, q, x and y in the diagram represent the number of children in each subset. Given that n(U) = 200, n(A) = 75 and n(B) = 35,

- (a) Express p in terms of x
- (b) Find the smallest possible value of *y*
- (c) Find the largest possible value
- (d) Find the value of q if p = 45
- 18. A, B and C are three sets and the numbers of elements are shown in the Venn diagram.



Given that  $U = A \cup B \cup C$  and that n(U) = 34, find (a) the value of x(b)  $n(A \cap B \cap C')$ 

- 19. If X, Y and Z are subsets of U and n(U) = 80, n(X) = 32, n(Y) = 27, n(Z) = 29,  $n(X \cap Y) = 12$ ,  $n(X \cap Z) = 13$ ,  $n(Y \cap Z) = 10$ ,  $n(X \cap Y \cap Z) = 3$ , find  $n(X' \cap Y' \cap Z')$ .
- 20. The 89 members of the Fifth Form belong to one or more of the Chess Club, the Debating Society and the Jazz Club. Denoting these sets by C, D and J respectively, it is known that 20 pupils belong to C only, 15 to J only and 12 to D only. Given that  $n(C \cap J) = 18$ ,  $n(C \cap D) = 20$  and  $n(D \cap J) = 16$ , calculate
  (a)  $n(C \cap J \cap D)$ , (b) n(D')
- 21. In a class of 25 students, 6 study French (F), 14 study Physics (P) and 3 study both French and Physics. Find  $n(F' \cap P')$ .
- 22. In a survey carried out at a sports centre, men were asked about their sporting activities. Of the men questioned, 12 played rugby, 16 played squash, 13 played tennis. 8 played none of these games, 3 played both rugby and squash, 5 played both rugby and tennis. 2 men played tennis only. Let R, S and T be the sets of rugby, squash and tennis players respectively. Let the number of men playing all three games be x. Draw a Venn diagram and show, in terms of *x*, the number in each region of the diagram in set R. Also show the number in each of the other four regions. Find the total number of

- men questioned and state the possible values of x.
- 23. Each student in a class of 17 studies at least one subject. Of these, 7 study Art (A), 5 study Biology (B), 12 study Home Management (H), 3 study Art only, 5 study Home Management only but no one studies both Art and Biology. Find n(A′ ∩ H′ ∩ B).
- 24. A number of students prepared for an examination in Physics, Chemistry and Mathematics. Out of this number, 15 took Physics, 20 took Chemistry and 23 took Mathematics. 9 students took both Chemistry and Mathematics, 6 took both Physics and Mathematics all those who took Physics also took Chemistry. One student fell ill and failed to write any of the papers.
  - (i) How many students took exactly one of the examination papers?
  - (ii) How many students wrote exactly two of the examination papers?
  - (iii) How many students prepared for the examination?
- 25. In a class of 40 students, 18 passed Mathematics, 19 passed Accounts, 16 passed Economics, 5 Mathematics and Account only, 6 Mathematics only, 9 Accounts only, 2 Accounts and Economics only. If each student offers at least one of the subjects,
  - (a) how many of the students failed in all the subjects?
  - (b) Find the percentage number who failed in at least one of Economics and Mathematics
  - (c) Calculate the probability that a students selected at random failed in Account.
- 26. In a survey of 100 out patients who reported at a hospital one day, it was found that 70 complained of fever, 50 had stomach ache and 30 were injured. All the 100 patients had at least one of the complaints and 44 had exactly two of the complaints. How many patients had all three complaints?

- 27. A universal set U includes subsets A, B and C. There are 5 members of U which are not in any of these subsets. Every member of B is a member of A but C contains members which do not belong either to A or B. Draw a Venn diagram to incorporate these features. Given further that,
  - (a) there are 20 members of C not in A or B.
  - (b) there are 3 members common to A, B and C,
  - (c) there are 13 members of B,
  - (d) there are 27 members of A not in C,
  - (e) there are 10 members common to A and C,

insert appropriate numbers in the regions of your diagram. Hence calculate,

- (i) n(A)
- (iii) n(U)
- (ii)  $n(A \cap C \cap B')$
- 28. A number of girls bought red, green and black ball pen. Three bought one of each colour. Of the girls who bought two colours, 3 did not buy red, 5 not green and 2 not black. The same number of girls bought red only as bought red with other colours. The same number bought black only as bought green only. More girls bought red and black but not green than bought black only, but more girls bought green only than bought green and black but not red.
  - (i) How many girls are there?
  - (ii) How many girls bought only one colour?
  - (iii) How many girls bought at least two colours?
  - (iv) How many girls bought exactly two of the colours?
  - (v) The probability that a girl bought black and red but not green?

### **REAL NUMBER SYSTEM**

The real numbers include all the numbers you encounter in arithmetic. The set of natural numbers, whole numbers, integers, rational and irrational numbers are all subsets of real numbers. The set of real numbers is denoted by  $\mathbb{R}$ .

We can draw a "tree diagram" which brings together all these sets of numbers.



#### PROPERTIES OF NUMBERS

### (i) NATURAL NUMBERS (ℕ)

A natural number is any whole number from 1 to infinity. Zero (0) is not part of natural numbers. Natural numbers are used to count items and to make lists.

Natural numbers are denoted by  $\mathbb{N}$  and is given by  $\{1, 2, 3, ...\}$ . Natural numbers are also called "counting numbers" because they are used for counting.

#### (ii) WHOLE NUMBERS

Whole numbers are the natural numbers and zero (0). It is denoted by W. Whole numbers exclude decimals and fractions.

$$\mathbb{W}=\{0,1,2,3,\dots\}$$

#### (iii) INTEGERS

Integers are the set of positive and negative whole numbers including zero (0). It is denoted by  $\mathbb{Z}$ .

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, ...\}$$

#### Rational Numbers

A rational number is any number that can be expressed in the form  $\frac{a}{b}$ , where  $a,b \in \mathbb{Z}$  and  $b \neq 0$ . All terminating and recurring decimals are rational numbers as they can be expressed in the form  $\frac{a}{b}$ .

e.g. 
$$2 = \frac{2}{1}$$
,  $0.3 = \frac{3}{10}$ ,  $0.\dot{2} = \frac{2}{9}$ .

Rational numbers are denoted by Q.

#### Note:

In Rational Numbers, decimals ends somewhere or it has a repeating pattern to it.

#### **Irrational Numbers**

Irrational numbers are numbers that cannot be expressed in the form  $\frac{a}{b}$ . E.g.  $\sqrt{p}$ , where p is not a perfect square.

Examples of irrational numbers:  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $\pi$ .

### Exercise 1 Date:.....

1. Which of the following numbers are irrational?

$$\frac{2}{3}$$
,  $\sqrt{36}$ ,  $\sqrt{3} + \sqrt{6}$ ,  $\pi$ , 0.75, 48%,  $8^{\frac{1}{3}}$ .

2. Put a ring around the irrational number in the list below.

$$\frac{2}{3}$$
,  $\sqrt{5}$ ,  $-\frac{5}{7}$ ,  $\sqrt{49}$ ,  $1\frac{4}{5}$ 

- 3.  $\pi$ ,  $3^{-2}$ ,  $3\frac{4}{7}$ , 33.3%,  $\sqrt{3}$ , 0.3,  $3^{999}$ . From this list, write down the numbers that are irrational.
- 4. State whether the following numbers are rational or irrational.
  - (i) 1.6
- (iv) 0.53
- (ii)  $\sqrt{11}$
- (v)  $\sqrt{121}$
- (iii) 0. 4
- (vi)  $\pi$

| <del>-</del>                                               |                                                                        |
|------------------------------------------------------------|------------------------------------------------------------------------|
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            |                                                                        |
|                                                            | Postore.                                                               |
|                                                            | Factors Factors are numbers that can divide other                      |
|                                                            | numbers exactly without leaving a                                      |
|                                                            | remainder. 2 is a factor of 12, 5 is a factor of                       |
|                                                            | 15.                                                                    |
| Exercise 2 Date:                                           | Multiples                                                              |
| State whether each of the following is true                | Multiples  Multiples are the continuous addition of a                  |
| or false.                                                  | given number.                                                          |
| 1. $Q \subset \mathbb{R}$                                  | E.g. Multiples of $2 = \{2, 4, 6, 8,\}$                                |
| 1. Q ⊂ M<br>2. R ⊂ Z                                       | Multiples of $2 = \{2, 4, 6, 6,\}$ $Multiples of 3 = \{3, 6, 9, 12,\}$ |
|                                                            |                                                                        |
| 3. $\mathbb{Z} \subset \mathbb{N}$                         | Multiples of $4 = \{4, 8, 12, 16,\}$                                   |
| 4. $\mathbb{N} \subset \mathbb{Q}$                         |                                                                        |
| 5. $\mathbb{Q} \subset \mathbb{W}$                         | Prime Numbers                                                          |
| 6. $\mathbb{Z} \subset \mathbb{Q}$                         | A prime number is any positive number                                  |
| 7. If $x \in \mathbb{Q}$ then x is an integer.             | that is exactly divisible by itself and one (1).                       |
| 8. If $x$ is a fractional number then $x \in \mathbb{Z}$ . | In other words, prime numbers are                                      |

In other words, prime numbers are numbers that have two factors. i.e. 1 and the number itself.

(Note that 1 is not a prime number).

9. If *x* is an irrational number then  $x \notin \mathbb{Q}$ .

10. If  $x \in \mathbb{R}$ , then x is an irrational number.

12. If  $x \in \mathbb{Q}$ , then x is a natural number.

11. If  $x \in \mathbb{Z}$ , then  $x \in \mathbb{Q}$ .

| For example, | 2, 3, 5, 7, 11, 13 | , are prime |
|--------------|--------------------|-------------|
| numbers.     |                    |             |

#### **Composite Numbers**

A whole number that can be divided evenly by numbers other than 1 and itself is a composite number. In other words, a composite number has more than two factors.

Example: 4, 6, 8, 9, 10, 12, ...

**Note:** 0 and 1 are neither prime nor composite numbers.

#### **Even Numbers**

An even number is a number that divides evenly (exactly) by two (2).

Example: 2, 4, 6, 8, ...

#### **Odd Numbers**

An odd number is one that does not divide evenly (exactly) by two (2).

Example: 1, 3, 5, 7, ...

#### **Square Numbers**

When an integer (whole number) is multiplied by itself, the result is a square number.

i.e. 
$$1 \times 1 = 1^2 = 1$$
  
 $2 \times 2 = 2^2 = 4$   
 $3 \times 3 = 3^2 = 9$   
 $4 \times 4 = 4^2 = 16$ 

i.e. the examples, 1, 4, 9 and 16 are all square numbers.

#### **Cube Numbers**

When an integer is multiplied by itself and then by itself again, the result is a cube number.

i.e. 
$$1 \times 1 \times 1 = 1^3 = 1$$
  
 $2 \times 2 \times 2 = 2^3 = 8$   
 $3 \times 3 \times 3 = 3^3 = 27$   
 $4 \times 4 \times 4 = 4^3 = 64$ 

In the examples above, 1, 8, 27, 64 are all examples of cube numbers.

#### Exercise 3

Date:.....

- 1.  $\sqrt{4}$ ,  $\sqrt{14}$ ,  $\sqrt{36}$ ,  $\sqrt{64}$ ,  $\sqrt{81}$ ,  $\sqrt{100}$ . From the list above, write down
  - (i) a prime number
  - (ii) a factor of 27
  - (iii) a multiple of 4
  - (iv) an irrational number.

| 2. | 4, √                            | 18, $\sqrt{25}$ , $\frac{3}{2}$ , 0.3333. |
|----|---------------------------------|-------------------------------------------|
|    | From the list above, write down |                                           |
|    | (i)                             | a prime number                            |
|    | (ii)                            | an irrational number                      |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 | <del></del>                               |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |
|    |                                 |                                           |

#### Exercise 4

Date:.....

1. 
$$\sqrt{5}$$
, -7, 343, -11, 0.4, 2.5,  $\frac{1}{3}$ 

From this list of numbers, write down

- (a) a cube number
- (b) the smallest number
- (c) a natural number
- 2. Write down a number between 20 and 30 that is
  - (i) a multiple of 6
  - (ii) a square number
  - (iii) a cube number
  - (iv) a prime number

| <del>_</del>                                                                             |  |
|------------------------------------------------------------------------------------------|--|
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
| <del>_</del>                                                                             |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
| Exercise 5 Date:                                                                         |  |
|                                                                                          |  |
| 1. $n$ is an integer and $120 < n < 140$ . Find                                          |  |
| the value of <i>n</i> when it is                                                         |  |
| (i) a multiple of 45                                                                     |  |
|                                                                                          |  |
| (ii) a square number                                                                     |  |
| (iii) a factor of 402                                                                    |  |
| (iv) a cube number.                                                                      |  |
| 2. Find                                                                                  |  |
|                                                                                          |  |
| (i) the smallest multiple of 7 that is                                                   |  |
| greater than 100.                                                                        |  |
| (ii) the largest cube number that less                                                   |  |
|                                                                                          |  |
| than 100                                                                                 |  |
| (iii) the six factors of 45                                                              |  |
| (iv) an irrational number between 6                                                      |  |
|                                                                                          |  |
| and 7                                                                                    |  |
|                                                                                          |  |
| $2 \text{ II} = \left( 2^{\frac{1}{2}} + 1 \sqrt{2} + 2^{\frac{1}{2}} \sqrt{20} \right)$ |  |
| 3. $U = \left\{-2\frac{1}{2}, -1, \sqrt{2}, 3.5, \sqrt{30}, \sqrt{36}\right\}$           |  |
| $X = \{integers\}$                                                                       |  |
| V = (irrational numbers)                                                                 |  |
| $Y = \{ \text{irrational numbers} \}.$                                                   |  |
| List the members of;                                                                     |  |
| (a) X, (b) Y                                                                             |  |

| Exercise 6 Date:  List five members in each of the following sets.  1. {rational numbers less than $-20.13$ } 2. {rational numbers between $-15$ and $9.9$ } 3. $\{x: x \in \mathbb{Q}, \text{and } -4.8 < x \le 12.6\}$ 4. $\{x: x \in \mathbb{Q}, \text{and } x > -27\frac{1}{3}\}$ 5. $\{x: x \in \mathbb{Q}, \text{and } x \le -64\frac{2}{5}\}$ | Exercise 7 Date: |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                      |                  |

|                                                                                      |                                                                                                                                                                                                                             | Commutative Law for Multiplication If $a, b \in \mathbb{R}$ , then $ab = ba$ That is, the product of two numbers is the same regardless of the order in which they are multiplied. i.e. $2 \times 3 = 3 \times 2$ .                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      |                                                                                                                                                                                                                             | Associative Law for Addition If $a, b, c \in \mathbb{R}$ then, $(a + b) + c = a + (b + c)$ That is, we obtain the same result whether we add the sum of $a$ and $b$ to $c$ , or we add $a$ to the sum of $b$ and $c$ . Since the way in which we associate or group these numbers is immaterial, we may write this common value as $a + b + c$ without fear of ambiguity. i.e. $2 + 3 + 4 = (2 + 3) + 4 = 2 + (3 + 4)$ |
|                                                                                      |                                                                                                                                                                                                                             | Exercise 8  Use the associative rule to add this as quickly as you can.  1. 2 + 9 + 4  2. 17 + 13 + 29  3. 103 + 172 + 98  4. 1245 + 225 + 163  5. 819 + 147 + 653  6. 1297 + 1363 + 4703                                                                                                                                                                                                                              |
| combining two<br>to produce a de<br>their sum. This<br>called addition               | Real Numbers  that there is a mode of oreal numbers <b>a</b> and <b>b</b> so as efinite real number called s mode of combination is a. The sum of <b>a</b> and <b>b</b> is <b>b</b> . In this sum <b>a</b> and <b>b</b> are |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| combining any produce a define product. This remultiplication. denoted by <b>a</b> . | hat there is a mode of $a$ two real numbers $a$ and $a$ to nite real number called their mode of combination is called . The product of $a$ and $a$ is $a$ , $a$ or $a$ is $a$ . The nbers $a$ and $a$ are called product.  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| If $a, b \in \mathbb{R}$ the Thus, the sum                                           | Law for Addition<br>n, $a + b = b + a$<br>of two numbers is the same<br>the order in which they are                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                        |

added. i.e. 2 + 3 = 3 + 2

#### **Associative Law for Multiplication**

If  $a, b, c \in \mathbb{R}$  then, (ab)c = a(bc)

That is, we obtain the same result whether we multiply the product of  $\boldsymbol{a}$  and  $\boldsymbol{b}$  by  $\boldsymbol{c}$ , or we multiply  $\boldsymbol{a}$  by the product of  $\boldsymbol{b}$  and  $\boldsymbol{c}$ . Since the way in which we associate or group these numbers is immaterial, we may write the result as  $\boldsymbol{abc}$  without fear of ambiguity. That is,

$$2 \times 3 \times 4 = (2 \times 3) \times 4 = 2 \times (3 \times 4)$$

#### **Distributive Law**

If  $a, b, c \in \mathbb{R}$  then, a(b + c) = ab + aci.e.  $2(3 + 4) = 2 \times 3 + 2 \times 4$ 

This law can be extended to the case where the sum consists of three or more items, as in the following example.

$$2a(x + 3y - 2z) = 2ax + 6y - 4z$$

#### Zero

It is assumed that there is a special number called zero and denoted by 0, such that, for every real number a, a + 0 = a.

#### Negative of a Number

It is assumed that for every real number a there exist a corresponding number, called the negative of a a and designated by -a, such that

$$a + (-a) = 0.$$

For example,

$$1 + (-1) = 0, (-2) + 2 = 0$$

#### The Unit

It is assumed that there is a special number called the number unit and denoted by 1, such that for every real number a,

$$a \cdot 1 = a$$
.

i.e. 
$$2 \times 1 = 2$$
,  $5 \times 1 = 5$ .

#### Reciprocal of a Number

It is assumed that for every number a which is not 0, there is an associated number  $\frac{1}{a}$ , called the reciprocal of a, such that;

$$a \cdot \frac{1}{a} = 1$$
.

#### Subtraction

The difference a - b, of any real numbers a and b, is defined by:

$$a - b = a + (-b).$$

The operation indicated by the sign minus which produces for any two real number *a* 

and b the number a - b is called subtraction.

#### Division

The quotient  $\frac{a}{b}$  or  $a \div b$  of any real numbers a and b, where  $b \ne 0$  is defined by:

$$\frac{a}{b} = a \times \left(\frac{1}{b}\right)$$

#### **Operations On Directed Numbers**

Positive and negative numbers are collectively known as **directed numbers**. In each of the following relationships, *a* and *b* are any two real numbers, except that the denominator of a fraction may not be zero.

(i) 
$$-(-a) = a$$

(ii) 
$$-(a+b) = -a - b$$

(iii) 
$$-(a - b) = -a + b$$

(iv) 
$$(-a)b = -(ab)$$

$$(v) (-a)(-b) = ab$$

(vi) 
$$\frac{1}{-h} = -\frac{1}{h}$$

$$(vii)\frac{a}{-b} = \frac{-a}{b} = -\frac{a}{b}$$

(viii) 
$$\frac{-a}{-b} = \frac{a}{b}$$

#### Exercise 9

Date:....

1. Identify the properties of real number that justify each of the following equations.

(i) 
$$x + y = y + x$$

(ii) 
$$rs = sr$$

(iii) 
$$2(3 \cdot 5) = (2 \cdot 3)5$$

(iv) 
$$5(a+b) = 5a + 5b$$

(v) 
$$(a+2)(b-3) = (b-3)(a+2)$$

(vi) 
$$(a + b)c = c(a + b) = ca + cb$$

2. Find the value of each of the following without the use of calculator.

(i) 
$$(-3) + (+5)$$
 (vi)  $0 - (-2)$ 

(ii) 
$$(-5) + (-3)$$
 (vii)  $(-5) - 0$ 

(iii) 
$$(-1) - (-2)$$
 (viii)  $15 + (-3)$ 

(iv) 
$$(+7) - (+2)$$
 (ix)  $(-7) - (-5)$   
(v)  $(-8) - (-9)$  (x)  $(+32) - (-23) + (-45)$ 

|             | Exercise 10 Date:                                      |
|-------------|--------------------------------------------------------|
|             | 1. Evaluate each of the following without              |
| <del></del> | the use of a calculator.                               |
|             | (i) $(+2)(-3)$                                         |
|             | (ii) $(-3)(-5)$                                        |
|             | (iii) $(-7)(+5)$                                       |
|             | (iv) $2(-5)$                                           |
|             | (v) $(-5)(-9)$                                         |
|             | (vi) (-7)0                                             |
|             | (vii) $(-1)(-2) + (-3)(0)$                             |
|             | (vii) $(-2) + (-3)(0)$<br>(viii) $(+2)(-3) - (+7)(-5)$ |
|             | (iii) $(-4)(-5) - (-2)(-1)$                            |
|             | (1X) (-4)(-3) - (-2)(-1)                               |
| <del></del> | 2 Evaluate the following with out the was              |
|             | 2. Evaluate the following without the use              |
|             | of a calculator.                                       |
|             | (i) $(-13) - (-13)$                                    |
|             | (ii) $-18 - (-10)$                                     |
|             | (iii) $(7 + (9 - (8 - 3)))$                            |
|             | (iv) $(9 - (7 - (6 - 5)))$                             |
|             | (v) $(5-3)(7-4)$                                       |
|             | (vi) $(7 \times 6) - (4 \times 2) + (16 \div 2)$       |
|             | (1) (7 (1 × 2) + (1 × 2)                               |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
| <del></del> |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |
|             |                                                        |

| Exercise 11 Date:                             |   |
|-----------------------------------------------|---|
| 1. Determine the negative of each of the      |   |
| following                                     |   |
| (:) <b>f</b> (-:) 2 2                         |   |
| (i) 5 (vi) 2 – 3                              |   |
| (ii) $-3$ (vii) $2a - 3b$                     |   |
| (iii) 0 (viii) $-(x-y)$                       |   |
| (iv) $2x$ (ix) $-[(a)(-b)]$                   |   |
| (1V) 2x                                       |   |
| (v) $\frac{2}{3}$ (x) $3x + 2$                |   |
| 3                                             |   |
|                                               |   |
| 2. Find the reciprocal of each of the         |   |
| following:                                    |   |
| (i) 1 (vi) a l h                              |   |
| (i) 1 (vi) $a + b$                            |   |
| (ii) $\frac{2}{3}$ (vii) $-\frac{0.4}{3}x$    |   |
| 3 1                                           |   |
| (iii) $3 + \frac{2}{5}$ (viii) $-\frac{1}{a}$ |   |
|                                               |   |
| (iv) $2 + \frac{1}{2}$ (ix) $\frac{1}{x+y}$   |   |
| - ~ ~ ~ ~ ~                                   |   |
| (v) 1.02 (x) $\frac{5}{2-0.3x}$               |   |
| 2-0.3x                                        | 1 |

Date:....

Exercise 12

| 1. $p$ is the largest prime number between 50 and 100. $q$ is the smallest prime number between 50 and 100. Calculate the value of $p-q$ .                                                                        |                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>2. The sum of the prime numbers less than 8 is equal to 17.</li> <li>(a) Find the sum of the prime numbers less than 21.</li> <li>(b) The sum of the prime numbers less than x is 58. Find x.</li> </ul> |                                                                                                                                                                                                                             |
| <ul> <li>(a) Find the sum of the first ten odd numbers</li> <li>(b) Find the sum of the first six prime numbers</li> <li>(c) Find the sum of the first eight composite numbers.</li> </ul>                        |                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                   | Exercise 13 Date:  1. Fill in the missing number in each calculation.  (i) 6 + 2 × = 24                                                                                                                                     |
|                                                                                                                                                                                                                   | <ul> <li>(ii) (10) ÷ 3 = 2</li> <li>2. Put in brackets to make the sentence correct.</li> <li>(i) 2 × 3 + 4 = 14</li> <li>(ii) 6 + 4 × 3 + 2 = 20</li> <li>(iii) 36 = 4 × 3 + 6 × 4</li> <li>(iv) 7 + 2 × 9 = 81</li> </ul> |
|                                                                                                                                                                                                                   | (v) $5 \times 3 + 6 \times 2 = 90$<br>(vi) $6 + 12 \div 3 \times 2 = 8$<br>(vii) $8 \times 8 - 5 - 4 = 15$<br>(viii) $7 + 14 \div 4 - 1 \times 2 = 14$                                                                      |

# Exercise 14 Date:.... 1. State whether each of the following is a prime number (P) or composite (C)number. (i) 16 37 (iv) (ii) 17 51 (v) (iii) 50 (vi) 79 2. Use the Sieve of Eratosthenes to identify prime numbers up to 100.

#### **Prime Factorization**

It is the determination of the set of prime numbers which multiply together to give original integer. It is also known as prime decomposition. All composite numbers can be broken down (decomposed) into a unique set of prime factors. A factor tree can be used to decompose the composite number. Beginning with the given number, 'branches' come down in pairs, representing a pair of factors that multiply to give the number above. This process continues until prime factors are reached.

#### Example 1

Write 48 as a product of prime numbers.

#### METHOD 1

$$48 = 8 \times 6$$
  
= 2 × 4 × 2 × 3  
= 2 × 2 × 2 × 2 × 3 = 2<sup>4</sup> × 3

#### METHOD 2

Write 48 as a product of prime numbers.



'branches' terminate on prime factors.

i.e. 
$$48 = 2 \times 2 \times 2 \times 2 \times 3 = 2^4 \times 3$$

Exercise 15 Date:......
Write each of number as a product of prime factors.

(i) 10 (iii) 168 (ii) 42 (iv) 2700

|                                           | · <del></del> |
|-------------------------------------------|---------------|
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           | - <u></u>     |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           | · <del></del> |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
|                                           |               |
| Exercise 16 Date:                         |               |
| Express each number as a product of prime |               |
| factors.                                  |               |
| (i) 72 (iii) 98                           |               |
| (ii) 350 (iv) 1352                        |               |

| Highest Common Factors (HCF) It refers to the highest (i.e. largest) factor that is common to the numbers given in the question. |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Example 2 Find the HCF of 12 and 15.                                                                                             |                                                  |
| <b>Solution</b> Factors of 12 = {1, 2, 3, 4, 6, 12} Factors of 15 = {1, 3, 5, 15}                                                |                                                  |
| $HCF = \{3\}.$                                                                                                                   |                                                  |
| Example 3<br>Find the HCF of $3^3 \times 5^2$ and $3^2 \times 5^4$ .                                                             |                                                  |
| Solution Let $P = 3^3 \times 5^2$                                                                                                |                                                  |
| $= 32 \times 3 \times 52$ $Q = 32 \times 54$                                                                                     |                                                  |
| $= 3^2 \times 5^2 \times 5^2$<br>Now, common factors of P and Q: $3^2 \times 5^2$ .                                              |                                                  |
| Exercise 17 Date: Find the HCF of the following pairs of                                                                         |                                                  |
| numbers. (i) 15 and 21. (iv) 28 and 42.                                                                                          |                                                  |
| (ii) 35 and 70. (v) 84 and 90. (iii) 15 and 60.                                                                                  |                                                  |
|                                                                                                                                  |                                                  |
| <br>                                                                                                                             |                                                  |
| <br>                                                                                                                             |                                                  |
| <br>                                                                                                                             |                                                  |
|                                                                                                                                  |                                                  |
|                                                                                                                                  |                                                  |
| <br>                                                                                                                             |                                                  |
| <br>                                                                                                                             |                                                  |
| <br>                                                                                                                             |                                                  |
| <br>                                                                                                                             | Exercise 18 Date:                                |
|                                                                                                                                  | Find the HCF of the following groups of numbers. |
|                                                                                                                                  | (i) 6, 15 and 42.<br>(ii) 18, 13 and 21          |
| <br>                                                                                                                             | (iii) 20, 12 and 28.<br>(iv) 48, 30 and 18.      |
| <br>                                                                                                                             |                                                  |

| Least Common Multiples (LCM) Up To 2 – Digit Numbers It refers to the lowest (i.e. smallest) multiple that is common to the numbers provided in the question.  Example 4 What is the lowest common multiple of 2 and 3?  Solution Multiples of 2 = {2, 4, 6, 8, 10, 12,} Multiples of 3 = {3, 6, 9, 12, 15,} LCM = {6} |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exercise 19 Date:                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                        |

|                                                                                                       | 3. If $C = 216k$ , find the least integral value of $k$ that will make $C$ a perfect square. |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
|                                                                                                       |                                                                                              |
| Exercise 20 Date:                                                                                     |                                                                                              |
| 1. The operation $(\cdot)$ is defined on the set $\{2, 4, 6\}$ by $m \cdot n =$ the unit digit in the |                                                                                              |
| product $mn$ .                                                                                        |                                                                                              |
| (i) Copy and complete the table                                                                       |                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                 |                                                                                              |
| 2         4         8         2           4         6                                                 |                                                                                              |
| 6                                                                                                     |                                                                                              |
| (ii) Use the table to solve the following                                                             |                                                                                              |
| equations                                                                                             |                                                                                              |
| (a) $x \cdot 4 = 8$<br>(b) $e \cdot e = e$                                                            |                                                                                              |
| $(b) e \cdot e = e$ $(c) (4 \cdot f) \cdot 4 = f$                                                     |                                                                                              |
|                                                                                                       |                                                                                              |
| 2. What is the least value of $p$ if                                                                  |                                                                                              |
| $2^3 \times 3^3 \times 7 \times p$ is a perfect square?                                               |                                                                                              |

|                                                                                         | 2. An integer, X, written as a product of its prime factors is $a^2 \times 7^{b+2}$ An integer, Y, written as a product of its prime factors is $a^3 \times 7^2$ .  The highest common factor (HCF) of X and Y is 1225. The lowest common multiple (LCM) of X and Y is 42,875.  Find the value of X and Y. |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
| <del>-</del>                                                                            |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
| Exercise 21 Date:                                                                       |                                                                                                                                                                                                                                                                                                            |
| <ol> <li>(a) Written as a product of its prime</li> </ol>                               |                                                                                                                                                                                                                                                                                                            |
| factors, $T = 2^2 \times 3 \times 5^2$ .                                                |                                                                                                                                                                                                                                                                                                            |
| <ul><li>(i) Work out the value of T</li><li>(ii) Write 80 as a product of its</li></ul> |                                                                                                                                                                                                                                                                                                            |
| prime factors.                                                                          |                                                                                                                                                                                                                                                                                                            |
| (iii) Find the highest common factor of $T$ and 80.                                     |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
| (b) Write down the next two prime<br>numbers after 47.                                  |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |
| (c)                                                                                     |                                                                                                                                                                                                                                                                                                            |
| (i) Write 180 as a product of its                                                       |                                                                                                                                                                                                                                                                                                            |
| prime factors. (ii) Find the lowest common                                              |                                                                                                                                                                                                                                                                                                            |
| multiple (LCM) of 180 and 54.                                                           |                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                            |

| <br> |
|------|
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |

#### FRACTIONS

The word 'fraction' comes from the Latin word 'frangere' which means to break into pieces.

A fraction is made up of a numerator (up) and a denominator (down). For example

where  $b \neq 0$ .

- The denominator tells you how many parts the whole is divided up into.
- The numerator tells you how many of the divided parts you have selected
- The horizontal line separating the numerator and denominator is called vinculum

#### TYPES OF FRACTION

#### PROPER FRACTION

It is a fraction where the numerator is less than the denominator.

For example  $\frac{1}{3}$ ,  $\frac{2}{3}$ ,  $\frac{4}{7}$  etc

#### IMPROPER FRACTION

It is a fraction where the numerator is greater than the denominator, as in,  $\frac{3}{2}$ ,  $\frac{5}{4}$ ,  $\frac{7}{6}$  etc.

#### MIXED FRACTION

It is a mixture of a whole number and a fraction. For example  $2\frac{1}{3}$ ,  $4\frac{3}{5}$ ,  $1\frac{3}{5}$  etc.

#### LIKE FRACTION

They are fraction with common denominator. For example  $\frac{3}{4}$ ,  $\frac{5}{4}$ ,  $\frac{1}{4}$ 

#### **UNLIKE FRACTION**

They are fraction with different denominator, for example  $\frac{1}{3}$ ,  $\frac{4}{5}$ ,  $\frac{2}{7}$  etc.

#### NOTE:

We can represent fractions using area. If a shape a divided into regions of equal areas, then shading a certain number of these regions will create a fraction of the whole shape.

For example



Fraction shaded =  $\frac{3}{6}$ 

| • |
|---|

The diagram below is a picture of a bread



- a. Into how many pieces has the whole bread been divided?
- b. How many pieces have been selected (shaded)?
- c. In representing the shaded fraction of the bread.
  - (i) What must the denominator equal?
  - (ii) What must the numerator equal?
  - (iii) Write the amount of bread selected (shaded) as a fraction.

#### **Ordering Fractions**

- To order (or arrange) fractions we must know how to compare different fractions. This is often done by considering equivalent fractions.
- If the numerators are the same, the smallest fraction is the one with the biggest denominator, as it has been up divided into the most pieces. For example  $\frac{1}{5} < \frac{1}{2}$ .
- If the denominator are the same, the smallest fraction is the one with the smallest numerator.
   For example: 3/11 < 5/11</li>
- To order two fractions with different numerator and denominator we can use our knowledge of equivalent fractions to produce fractions and then compare the numerators.
- The lowest common denominator (LCD) is the lowest common multiple of the different denominators.
- Ascending order is when numbers are ordered going up, from smaller to largest.
- Descending order is the numbers ordered going down, from largest to smallest.

#### Example 5

Arrange the fractions  $\frac{3}{4}$ ,  $\frac{2}{3}$ ,  $\frac{4}{5}$  in ascending order of magnitude.

#### Solution

$$\frac{3}{4}, \frac{2}{3}, \frac{4}{5} = \frac{45,40,48}{60}$$
LCD of 3,4 and 5 is 60

Produce equivalent fractions with denominator of 60. Order fractions in ascending order

$$=\frac{40}{60},\frac{45}{60},\frac{48}{60}$$

$$=\frac{2}{3},\frac{3}{4},\frac{4}{5}$$

Exercise 23 Date:....

Arrange the following fractions in ascending order.

- (i)  $\frac{5}{6}$ ,  $\frac{3}{5}$ ,  $\frac{2}{3}$ (ii)  $4\frac{2}{7}$ , 4.03,  $\frac{28}{7}$ , 5.75

| (iii) $\frac{7}{75}$ , $\frac{2}{5}$ and $\frac{1}{3}$ |
|--------------------------------------------------------|
| (iii) $\frac{7}{2}$ and $\frac{1}{2}$                  |
| 75, 5 333                                              |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |

**Fundamental Operations On Fractions**  $a, b, c, d \in \mathbb{R}$ , except that no factor in the denominator of a fraction may be zero.

- (ii)  $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$
- (iii)  $\frac{a}{c} + \frac{b}{d} = \frac{ad+bc}{cd}$
- (iv)  $\frac{a}{c} \frac{b}{c} = \frac{a-b}{c}$
- $(v) \quad \frac{a}{c} \frac{b}{d} = \frac{ad bc}{cd}$
- (vi)  $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
- (vii)  $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$

### **Order Of Operation**

When a problem (be it an integer or a fraction) involves more than one operation, the following order must be observed;

#### **BODMAS**

(), orders,  $\div$ ,  $\times$ , +, -

Thus.

Bracket first if there is .....() 'Order of' next (if there is).....(X) Division next (if there is)..... ÷ Multiplication (if there is)..... × Addition (if there is).....+ Subtraction last (if there is)..... –

Date:.... Exercise 24

Evaluate the following without the use of

- 1.  $\frac{1}{2} + \frac{1}{3} + \frac{1}{4}$

| <del></del> |                                                                                                 |
|-------------|-------------------------------------------------------------------------------------------------|
|             | Exercise 25 Date:                                                                               |
|             |                                                                                                 |
|             | Simplify the following without the use of                                                       |
|             | ompiny the following without the use of                                                         |
|             | calculator.                                                                                     |
|             | 1 2 2                                                                                           |
|             | 1. $1\frac{1}{2} - \frac{3}{5} \div \frac{2}{3}$                                                |
|             | 2 5 3                                                                                           |
|             | (3 1) 1 1                                                                                       |
|             | 1 7 1×==1\varphi 1=2=                                                                           |
|             | 1 2. (/A 4 J-                                                                                   |
|             | 2. $\left(\frac{3}{4} - \frac{1}{3}\right) \times 4\frac{1}{3} \div 3\frac{1}{4}$               |
|             | $\frac{2}{4} \cdot \left(\frac{1}{4} - \frac{3}{3}\right) \wedge \frac{1}{3} \cdot \frac{3}{4}$ |
|             |                                                                                                 |
|             |                                                                                                 |
|             |                                                                                                 |
|             |                                                                                                 |
|             | 3. $\frac{\frac{3}{4}(3\frac{3}{8}+1\frac{5}{6})}{2\frac{1}{8}-1\frac{1}{2}}$                   |
|             |                                                                                                 |
|             |                                                                                                 |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exercise 26 Date:                                                                                                                                                                                         |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1. By how much is the sum of $3\frac{2}{3}$ and $2\frac{1}{5}$                                                                                                                                            |             |
| less than 7?                                                                                                                                                                                              |             |
| less than 7:                                                                                                                                                                                              |             |
| 2. Simplify, without using mathematical                                                                                                                                                                   |             |
| tables or calculators                                                                                                                                                                                     |             |
| $\frac{3}{3} - \frac{7}{2} + \frac{1}{2}$                                                                                                                                                                 |             |
| (i) $\frac{\frac{4}{3} \cdot 8}{\frac{2}{3} \cdot \text{of} \left(\frac{7}{7} - \frac{1}{4}\right)}$                                                                                                      |             |
| (i) $\frac{\frac{3}{4} - \frac{7}{8} + \frac{1}{2}}{\frac{3}{4} \text{ of } \left(\frac{7}{8} - \frac{1}{2}\right)}$<br>(ii) $3\frac{4}{9} \div \left(5\frac{1}{3} - 2\frac{3}{4}\right) + 5\frac{9}{10}$ |             |
| (II) $3\frac{1}{9} + (3\frac{1}{3} + 2\frac{1}{4}) + 3\frac{1}{10}$                                                                                                                                       |             |
| (iii) $\left(\frac{2}{3} \text{ of } 2\frac{1}{4}\right) \div \left(3\frac{1}{2} - 2\frac{1}{4}\right)$                                                                                                   | <del></del> |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
| <del></del>                                                                                                                                                                                               |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                           |             |

|           | Exercise 27 Date:                                                                                                                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 1. Simplify $\sqrt{5\frac{44}{49}} \times \left(11\frac{1}{3}\right)^{-1}$ , leaving your                                                                                                                  |
|           | answer in the form $\frac{p}{q}$ where p and q are                                                                                                                                                         |
|           | positive integers.                                                                                                                                                                                         |
|           | positive integers.                                                                                                                                                                                         |
|           | 2. Simplify, without using a calculator                                                                                                                                                                    |
|           | (i) $3\frac{4}{7} - 1\frac{1}{3} \div 2\frac{2}{5}$                                                                                                                                                        |
|           | $\frac{13}{3} - 1\frac{6}{7}$                                                                                                                                                                              |
|           | (i) $\frac{3\frac{4}{7} - 1\frac{1}{3} \div 2\frac{2}{5}}{\frac{13}{3} - 1\frac{6}{7}}$ (ii) $\left(4\frac{3}{4} - 1\frac{5}{6}\right) \div 1\frac{1}{24} \times \left(1\frac{2}{3} + 2\frac{1}{2}\right)$ |
|           | (iii) $\frac{4\frac{1}{4} - 3\frac{1}{2} + 3\frac{1}{8}}{3\frac{2}{5} \text{ of } 1\frac{1}{4} \div 2\frac{5}{6}}$                                                                                         |
|           | $3\frac{2}{5}$ of $1\frac{1}{4} \div 2\frac{5}{6}$                                                                                                                                                         |
|           | 3. When a fraction is reduced to its lowest                                                                                                                                                                |
|           | term, it is equal to $\frac{3}{4}$ . The numerator of                                                                                                                                                      |
|           | the fraction when doubled would be 34                                                                                                                                                                      |
|           | greater than the denominator. Find the                                                                                                                                                                     |
|           | fraction.                                                                                                                                                                                                  |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
| - <u></u> |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Solution Fraction on saving = $\frac{3}{10}$ Remainder = $1 - \frac{3}{10} = \frac{7}{10}$ Fraction on Rent = $\frac{1}{6}$ of the Remainder = $\frac{1}{6}$ × $\frac{7}{10} = \frac{7}{60}$ Total fraction used = $\frac{3}{10} + \frac{7}{60} = \frac{5}{12}$ Fraction left for other purposes = $1 - \frac{5}{12} = \frac{7}{12}$ Example 7 A girl spent $\frac{3}{5}$ of her pocket money and was left with GHe1,800.00. How much was her pocket money?  Solution Fraction spent = $\frac{3}{5}$ Fraction left = $1 - \frac{3}{5} = \frac{2}{5}$ Let her pocket money be GHe $x$ If amount left = GHe1,800.00 $\therefore x = \frac{5}{2} \times 1800 = 4500$ $\therefore Her pocket money was GHe4,500.00$ Alternative Method 1 Let her pocket money be GHe $x$ Amount spent = $\frac{3}{5}x$ Amount left = GHe1,800.00 $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$ | Applications of Fractions Example 6 A man saves $\frac{3}{10}$ of his income and pay $\frac{1}{6}$ of the remainder as rent. Find what fraction of his income is left for other purposes. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $=\frac{1}{6} \times \frac{7}{10} = \frac{7}{60}$ $Total fraction used = \frac{3}{10} + \frac{7}{60} = \frac{5}{12}$ $Fraction left for other purposes$ $= 1 - \frac{5}{12} = \frac{7}{12}$ $Example 7$ A girl spent $\frac{3}{5}$ of her pocket money and was left with GH¢1,800.00. How much was her pocket money?  Solution  Fraction spent = $\frac{3}{5}$ Fraction left = $1 - \frac{3}{5} = \frac{2}{5}$ Let her pocket money be GH¢ $x$ If amount left = GH¢1,800.00 $\Rightarrow \frac{2}{5}x = 1800$ $\therefore x = \frac{5}{2} \times 1800 = 4500$ $\therefore Her pocket money was GH¢4,500.00$ $Alternative Method 1$ Let her pocket money be GH¢ $x$ Amount spent = $\frac{3}{5}x$ $Amount left = GH¢1,800.00$ $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                   | Fraction on saving = $\frac{3}{10}$                                                                                                                                                       |
| Fraction left for other purposes $=1-\frac{5}{12}=\frac{7}{12}$ Example 7 A girl spent $\frac{3}{5}$ of her pocket money and was left with GH¢1,800.00. How much was her pocket money?  Solution Fraction spent $=\frac{3}{5}$ Fraction left $=1-\frac{3}{5}=\frac{2}{5}$ Let her pocket money be GH¢ $x$ If amount left $=$ GH¢1,800.00 $\Rightarrow \frac{2}{5}x=1800$ $\therefore x=\frac{5}{2}\times1800=4500$ $\therefore$ Her pocket money was GH¢4,500.00  Alternative Method 1 Let her pocket money be GH¢ $x$ Amount spent $=\frac{3}{5}x$ Amount left $=$ GH¢1,800.00 $\Rightarrow \frac{3}{5}x+1800=x$ $\Rightarrow 3x+5\times1800=x$ $\Rightarrow 3x+5\times1800=5x$ $3x-5x=-9000$ $-2x=-9000$                                                                                                                                                                                                                                                                                                                                 | Fraction on Rent = $\frac{1}{6}$ of the Remainder<br>= $\frac{1}{6} \times \frac{7}{10} = \frac{7}{60}$                                                                                   |
| Example 7 A girl spent $\frac{3}{5}$ of her pocket money and was left with GH¢1,800.00. How much was her pocket money?  Solution Fraction spent $=\frac{3}{5}$ Fraction left $=1-\frac{3}{5}=\frac{2}{5}$ Let her pocket money be GH¢ $x$ If amount left $=$ GH¢1,800.00 $\Rightarrow \frac{2}{5}x = 1800$ $\therefore x = \frac{5}{2} \times 1800 = 4500$ $\therefore Her pocket money was GH¢4,500.00$ Alternative Method 1 Let her pocket money be GH¢ $x$ Amount spent $=\frac{3}{5}x$ Amount left $=$ GH¢1,800.00 $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5x + 1800 = 5x$ $\Rightarrow 3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                 | <br>Total fraction used = $\frac{3}{10} + \frac{7}{60} = \frac{5}{12}$                                                                                                                    |
| A girl spent $\frac{3}{5}$ of her pocket money and was left with GH¢1,800.00. How much was her pocket money?  Solution  Fraction spent = $\frac{3}{5}$ Fraction left = $1 - \frac{3}{5} = \frac{2}{5}$ Let her pocket money be GH¢ $x$ If amount left = GH¢1,800.00 $\Rightarrow \frac{2}{5}x = 1800$ $\therefore x = \frac{5}{2} \times 1800 = 4500$ $\therefore Her pocket money was GH¢4,500.00$ Alternative Method 1 Let her pocket money be GH¢ $x$ Amount spent = $\frac{3}{5}x$ Amount left = GH¢1,800.00 $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |
| Fraction spent $=$ $\frac{3}{5}$ Fraction left $=$ $1 - \frac{3}{5} = \frac{2}{5}$ Let her pocket money be GH¢ $x$ If amount left $=$ GH¢1,800.00 $\Rightarrow \frac{2}{5}x = 1800$ $\therefore x = \frac{5}{2} \times 1800 = 4500$ $\therefore Her pocket money was GH¢4,500.00$ $Alternative Method 1$ Let her pocket money be GH¢ $x$ Amount spent $=$ $\frac{3}{5}x$ Amount left $=$ GH¢1,800.00 $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A girl spent $\frac{3}{5}$ of her pocket money and was left with GH¢1,800.00. How much was her                                                                                            |
| If amount left = GH¢1,800.00<br>$\Rightarrow \frac{2}{5}x = 1800$ $\therefore x = \frac{5}{2} \times 1800 = 4500$ $\therefore \text{ Her pocket money was GH¢4,500.00}$ Alternative Method 1<br>Let her pocket money be GH¢ x<br>Amount spent = $\frac{3}{5}x$<br>Amount left = GH¢1,800.00<br>$\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fraction spent = $\frac{3}{5}$                                                                                                                                                            |
| ∴ Her pocket money was GH¢4,500.00  Alternative Method 1  Let her pocket money be GH¢ $x$ Amount spent = $\frac{3}{5}x$ Amount left = GH¢1,800.00 $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If amount left = GH¢1,800.00                                                                                                                                                              |
| Alternative Method 1 Let her pocket money be GH¢ $x$ Amount spent = $\frac{3}{5}x$ Amount left = GH¢1,800.00 $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>$\therefore x = \frac{5}{2} \times 1800 = 4500$                                                                                                                                       |
| Let her pocket money be GH¢ $x$ Amount spent = $\frac{3}{5}x$ Amount left = GH¢1,800.00 $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>∴ Her pocket money was GH¢4,500.00                                                                                                                                                    |
| $\Rightarrow \frac{3}{5}x + 1800 = x$ $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Let her pocket money be $GH \notin x$                                                                                                                                                     |
| $3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>Amount left = GH¢1,800.00                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Rightarrow 3x + 5 \times 1800 = 5x$ $3x - 5x = -9000$ $-2x = -9000$                                                                                                                     |

| ∴ Her pocket money was GH¢4,500.00                                                             |  |
|------------------------------------------------------------------------------------------------|--|
| Alternative Method 2 Suppose her pocket money be <i>x</i> One (1) corresponds to total amount. |  |
| one (1) corresponds to total amount.                                                           |  |
| $\Rightarrow 1 \longrightarrow x$                                                              |  |
| Fraction spent = $\frac{3}{5}$                                                                 |  |
| Fraction spent $=\frac{3}{5}$<br>Fraction left $=1-\frac{3}{5}=\frac{2}{5}$                    |  |
| Fraction left $=1-\frac{1}{5}-\frac{1}{5}$                                                     |  |
| ∴ Given amount left = $GH$ ¢1,800.00                                                           |  |
| $\Rightarrow \frac{2}{5}$ $\longrightarrow$ 1,800.00                                           |  |
| 5                                                                                              |  |
| If more, less divide                                                                           |  |
| $\therefore x = \frac{1}{\frac{2}{5}} \times 1,800$                                            |  |
| $=\frac{5}{2} \times 1,800$                                                                    |  |
| = 4,500                                                                                        |  |
| ∴ Her pocket money was GH¢4,500.00                                                             |  |
| Exercise 28 Date:                                                                              |  |
| 1. Kofi spent $\frac{2}{5}$ of his pocket money on                                             |  |
| snacks and $\frac{1}{3}$ of the remaining on                                                   |  |
| transport. What fraction of his money is left?                                                 |  |
|                                                                                                |  |
| 2. A farmer uses $\frac{2}{5}$ of his land to grow                                             |  |
| cassava, $\frac{1}{3}$ of the remainder for yams                                               |  |
| and the rest for maize. Find the part of the land used for maize.                              |  |
| the land used for maize.                                                                       |  |
| 3. A boy spent $\frac{1}{2}$ of his money on food and $\frac{1}{3}$                            |  |
| of the rest on clothes. He had                                                                 |  |
| GH¢150.00 left in his pocket. How much money had he originally?                                |  |
| money had he originary.                                                                        |  |
| 4. A clerk spends $\frac{1}{5}$ , $\frac{1}{3}$ and $\frac{1}{8}$ of his annual                |  |
| salary on rent, transport, and                                                                 |  |
| entertainment respectively. If after all these expenses he had GH¢4,100.00 left,               |  |
| find how much he earns per annum.                                                              |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |

| <br> |
|------|
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| I .  |

| <br>Exercise 29 Date:                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. A man spent $\frac{1}{4}$ of his monthly salary on rent, $\frac{2}{5}$ on food and $\frac{1}{6}$ on his children's education. What fraction of his salary is left?                                                          |
| 2. A clerk spends $\frac{1}{5}$ , $\frac{1}{3}$ and $\frac{1}{8}$ of his annual salary on rent, transport and entertainment respectively. If after all these expenses he had GH¢820.00 left, find how much he earns per annum. |
| 3. A man spends $\frac{1}{9}$ of his monthly salary on rent, $\frac{1}{2}$ on food and $\frac{1}{4}$ on clothes and other items. If he had GH¢19,500.00 left at the end of the month, how much does he earn?                   |
| 4. A woman spent $\frac{1}{6}$ of her monthly salary on foodstuffs, $\frac{1}{3}$ on drugs, $\frac{1}{4}$ on utility bills and had GH¢285.00 left. Calculate her monthly salary.                                               |
| <br>                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                |
| <br>                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                |
| <br>                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                |

| <del></del> | <del></del> |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| <del></del> |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| <del></del> |             |
|             |             |
|             |             |
|             |             |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | · |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |

| Approximating And Rounding Numbers Decimal Places A decimal place(s) (d.p) in a number is that which comes after a decimal point. | Exercise 31 Date:                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Steps 1. Identify the position of the last digit.                                                                                 | (iii) 3 d.p<br>(iv) 4 d.p                                                                     |  |
| 2. Then look at the next digit to the right called the <b>decider</b> .                                                           | (b) Round each of the following number to the nearest (i) 10 (ii) 100 (iii) 1000 1. 34 8. 497 |  |
| 3. If the decider is 5 or more, then round – up the last. If the decider is 4 or less, then leave the last digit as it is.        | 2. 23 9. 501<br>3. 63 10. 892<br>4. 98 11. 1096<br>5. 105 12. 1956                            |  |
| Exercise 30 Date:                                                                                                                 | 5. 105 12. 1936<br>6. 147 13. 4464<br>7. 287 14. 9600                                         |  |
| 2. Correct the following to 2 d.p.  (i) 4.377 (iv)  2381.597  (ii) 7.5237 (v) 1045.2781  (iii) 2.371 (vi) (3.09) <sup>2</sup>     |                                                                                               |  |
| (iii) 2.371 (vi) (3.09) <sup>2</sup>                                                                                              |                                                                                               |  |
| <br>                                                                                                                              |                                                                                               |  |
|                                                                                                                                   |                                                                                               |  |
| <br>                                                                                                                              |                                                                                               |  |
|                                                                                                                                   |                                                                                               |  |
|                                                                                                                                   |                                                                                               |  |
| <br>                                                                                                                              |                                                                                               |  |
|                                                                                                                                   |                                                                                               |  |
|                                                                                                                                   |                                                                                               |  |
| <del></del>                                                                                                                       |                                                                                               |  |
| <br>                                                                                                                              |                                                                                               |  |
| <br>                                                                                                                              |                                                                                               |  |
|                                                                                                                                   |                                                                                               |  |
|                                                                                                                                   |                                                                                               |  |
|                                                                                                                                   |                                                                                               |  |

| Exercise 32 Date:                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------|
| 3. Round 19.4863027  (a) to the nearest unit (b) to 2 decimal places (c) to 3 decimal places (d) to 5 decimal places |
| <br>                                                                                                                 |
|                                                                                                                      |
| <br>                                                                                                                 |
| <br>                                                                                                                 |
| <br>                                                                                                                 |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
| <br>                                                                                                                 |
|                                                                                                                      |
| <br>                                                                                                                 |

|       | Exercise 33                                                                                                                                                             | Date:                                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|       | Round correct to                                                                                                                                                        | the number of significant                     |
|       | figures shown in                                                                                                                                                        |                                               |
|       | (i) 33.4                                                                                                                                                                | [2]                                           |
|       | (ii) 7.327                                                                                                                                                              | [3]                                           |
|       | (iii) 1045.2781                                                                                                                                                         | [2]                                           |
|       | (iv) 0.00578                                                                                                                                                            | [2]                                           |
|       | (v) 1426.3075                                                                                                                                                           | [2]                                           |
|       | (vi) 1.02616                                                                                                                                                            | [3]                                           |
|       | (vii) 7.30713                                                                                                                                                           | [3]                                           |
|       | (viii) 0.003007                                                                                                                                                         |                                               |
|       | (ix) 0.024561                                                                                                                                                           | [3]                                           |
|       | (x) 5045.004                                                                                                                                                            |                                               |
|       | (xi) 46.23067                                                                                                                                                           | L 3                                           |
|       |                                                                                                                                                                         | LJ                                            |
|       |                                                                                                                                                                         |                                               |
|       | Exercise 34                                                                                                                                                             | Date:                                         |
|       | Round correct to                                                                                                                                                        | the number of significant                     |
|       | figures shown in                                                                                                                                                        | brackets.                                     |
|       |                                                                                                                                                                         |                                               |
|       | (i) 0.037696                                                                                                                                                            | [3]                                           |
|       | _                                                                                                                                                                       | [3]<br>[3]                                    |
|       | (i) 0.037696                                                                                                                                                            |                                               |
|       | (i) 0.037696<br>(ii) 0.002473                                                                                                                                           | [3]                                           |
|       | (i) 0.037696<br>(ii) 0.002473<br>(iii) 0.0033780                                                                                                                        | [3]<br>[3]                                    |
|       | (i) 0.037696<br>(ii) 0.002473<br>(iii) 0.0033780<br>(iv) 0.005854                                                                                                       | [3]<br>[3]<br>[2]<br>[3]                      |
|       | (i) 0.037696<br>(ii) 0.002473<br>(iii) 0.0033780<br>(iv) 0.005854<br>(v) 0.081778                                                                                       | [3]<br>[3]<br>[2]<br>[3]<br>[2]               |
|       | (i) 0.037696<br>(ii) 0.002473<br>(iii) 0.0033780<br>(iv) 0.005854<br>(v) 0.081778<br>(vi) 0.000407                                                                      | [3]<br>[3]<br>[2]<br>[3]<br>[2]<br>[3]        |
|       | (i) 0.037696<br>(ii) 0.002473<br>(iii) 0.0033780<br>(iv) 0.005854<br>(v) 0.081778<br>(vi) 0.000407<br>(vii) 0.037696                                                    | [3]<br>[3]<br>[2]<br>[3]<br>[2]<br>[3]<br>[3] |
|       | (i) 0.037696<br>(ii) 0.002473<br>(iii) 0.0033780<br>(iv) 0.005854<br>(v) 0.081778<br>(vi) 0.000407<br>(vii) 0.037696<br>(viii) 0.0395387                                | [3]<br>[3]<br>[2]<br>[3]<br>[2]<br>[3]<br>[3] |
|       | (i) 0.037696<br>(ii) 0.002473<br>(iii) 0.0033780<br>(iv) 0.005854<br>(v) 0.081778<br>(vi) 0.000407<br>(vii) 0.037696<br>(viii) 0.0395387<br>(ix) 7.0959                 | [3]<br>[3]<br>[2]<br>[3]<br>[3]<br>[3]<br>[3] |
| igure | (i) 0.037696<br>(ii) 0.002473<br>(iii) 0.0033780<br>(iv) 0.005854<br>(v) 0.081778<br>(vi) 0.000407<br>(vii) 0.037696<br>(viii) 0.0395387<br>(ix) 7.0959<br>(x) 0.006586 | [3]<br>[3]<br>[2]<br>[3]<br>[2]<br>[3]<br>[3] |

The first significant figure of a decimal number is the first (left – most) non – zero digit. For example,

- (i) The first significant figure of 13456 is 1.
- (ii) The first significant figure of 0.00024678 is 2.

Every digit to the right of the first significant figure is regarded as another significant figure.

### Steps

Count off the specified number of significant figures then look at the next digit.

- (i) If the digit is less than 5, do not change the last significant figure.
- (ii) If the digit is 5 or more, then increase the last significant figure by 1.

### Note:

Delete all figures following the significant figures, replacing with 0s where necessary.

| Exercise 35 | Date: |
|-------------|-------|
|             |       |

1. Round correct to the number of significant figures shown in brackets.

| (i)   | 48976 | [3] |
|-------|-------|-----|
| (ii)  | 1975  | [2] |
| (iii) | 57774 | [3] |
| (iv)  | 39763 | [3] |
| (v)   | 75882 | [3] |
| (vi)  | 10100 | [2] |
| (vii) | 6857  | [3] |

2.

| (i)   | $(0.13)^3$                     | [3] |
|-------|--------------------------------|-----|
| (ii)  | $2^{\sqrt{3}}$                 | [4] |
| (iii) | $\sqrt{25.65}$                 | [4] |
| (iv)  | $\sqrt[3]{2.35^2 - 1.09^2}$    | [4] |
| (v)   | $\sqrt[3]{7^{1.5} + 22^{0.9}}$ | [4] |

### Exercise 36

Date:.....

1.

(a)

- (i) Write the number five million, two hundred and seven in figures.
- (ii) Write thirty thousand, one hundred and eleven in figures.
- (b) Write down the following numbers in words.
  - (i) 604925
  - (ii) 1111111

2.

- (i) Write 84 as a product of its prime factors.
- (ii) Find the highest common factor (HCF) of 84 and 126.
- (iii) Write 4647 correct to the nearest 100.
- (iv) Find the LCM of 18 and 21.

3.

- (a) Find the value of
  - (i) the square root of 19044.
  - (ii)  $2^7$
  - (iii) 999<sup>0</sup>
  - (iv) 12 (9 (7 5))
  - (v) 2(17+3) (17+(10-3)) + 3.4
  - (vi) 2(11-10) + 3(10-8) 4(9-7)
  - (vii) (12-7)+(6-3)+18+20
  - (viii)  $3^2 + 2^2$
  - (ix)  $2^3 + 3^2$
  - (x)  $7^2 5^2$
  - (xi)  $(8^2 2^2) + 3^3$
  - (xii)  $5^2 4^2 + (5 4)^2$
  - (xiii)  $4 5(4^2 3^3)^2$
- (b) Evaluate the following.
  - (i)  $10 4 \times 5$
  - (ii)  $5 3 \times 8 6 \div 2$
  - (iii)  $7 + 3 \div 4 + 1$
  - (iv)  $100 30 \times (4 3)$
  - (v)  $(8+8)-6\times 2$
  - (vi)  $[(12+6) \div 9] \times 4$
  - (vii)  $[(60-40)-(53-43)]\times 2$
  - (viii)  $6 \times [(20 \div 4) (6 3) + 2]$
  - (ix)  $\{6 + [5 \times (2 + 30)]\} \times 10$

(x) 
$$100 - [6 \times (4 + 20) - 4 \times (3 + 0)]$$

- 4. The price of a ticket for a football match is GH¢124.00.
  - (a) Calculate the amount received when 76500 tickets are sold.
  - (b) Write your answer in (a) to the nearest 100,000.

5.

- ( $\alpha$ ) Here is a set of numbers {-4, -1, 0, 3, 4, 6, 9, 15, 16, 19, 20}. Which of these numbers are
  - (a) natural numbers?
  - (b) square numbers?
  - (c) negative numbers?
  - (d) prime numbers?
  - (e) multiples of 2?
  - (f) factors of 80?

 $(\beta)$ 

- (a) Use a factor tree to express 400 as a product of prime factors.
- (b) Use division method to express 1080 as a product of prime factors.
- (c) Use your answers to find:
  - (i) the LCM of 400 and 1080.
  - (ii) the HCF of 400 and 1080.
  - (iii)  $\sqrt{400}$ .
  - (iv) whether 1080 is a cube number; how can you tell?

### Exercise 37

Date:....

1.

(α) 1, 3, 8, 9, 10.

From these numbers, write down

- (a) the prime number
- (b) a multiple of 5
- (c) two square numbers
- (d) two factors of 32
- (e) find two numbers m and n from the list such that  $m=\sqrt{n}$  and  $n=\sqrt{81}$
- (f) If each of the numbers in the list can be used once, find p, q, r, s, t such that (p+q)r = 2(s+t) = 36 if p < q < t < s.

 $(\beta)$ 

- (i) Insert one of the symbols>, =, < to make each of the statements correct.</li>
  - (a)  $(0.2)^2$ \_\_\_\_4 ×  $10^{-2}$
  - (b)  $\frac{37}{73}$ \_\_\_\_\_0.507
- (ii)  $\frac{82}{99}$ , 82%,  $\sqrt{0.674}$ 
  - (a) Write these in order of size, starting with the smallest.
  - (b) Find the difference between the largest and the smallest, giving your answer correct to two significant figures.

2.

- (a) Write 135, 210 and 1120 as the product of their prime factors.
- (b) Copy this grid

$$egin{array}{llll} a = 1 & b = & c = \ d = & e = & f = \ g = & h = & i = 8 \ \end{array}$$

The nine digits 1, 2, 3, 4, 5, 6, 7, 8, 9 are to be placed in your grid in such a way that the following four statements are all true.

$$a \times b \times d \times e = 135$$
  
 $b \times c \times e \times f = 1080$   
 $d \times e \times g \times h = 210$   
 $e \times f \times h \times i = 1120$ 

The digits 1 and 8 have already been placed for you.

Use your answers to part (a) to answer the following questions.

- (i) Which is the only digit, other than 1, that is a factor of 135, 1080, 210 and 1120?
- (ii) Which is the only letter to appear in all four statements above?
- (iii) 7 is a factor of only two of the numbers 135, 1080, 210 and 1120. Which two?
- (c) Now complete the grid.

### **Recurring Decimals To Fractions**

A rational number (i. e.  $\frac{p}{q}$ ,  $p, q \in \mathbb{R}$ ,  $q \neq 0$ ) can be expressed as either a terminating or recurring (repeating) decimal.

$$\frac{3}{4} = 0.75$$
 (terminates)

$$\frac{7}{4} = 1.75$$
 (terminates)

$$\frac{1}{3} = 0.333 \dots = 0.\dot{3}$$
 (does not terminate)

$$\frac{2}{8}$$
 = 0.181818 ... = 0.18 (does not terminate)

**Note:**  $0.\dot{1}\dot{2}\dot{6} = 0.126126126...$  Recurring decimals can be converted to a rational number.

### Example 8

Show that the following are rational numbers.

- (i) 0.3
- (iii) 1. 24
- (ii) 0.14
- (iv)  $0.1\dot{3}\dot{7}$

### Solution...

(i) 
$$0.\dot{3} = 0.3333...$$
  
Let  $x = 0.3333...$  (1)

Multiply through by 10 (Since only 3 recurs)  $\Rightarrow 10x = 3.3333...$  (2)

$$(2) - (1) \Rightarrow 9x = 3$$

$$x = \frac{3}{9}$$

$$x = \frac{1}{3}$$

$$\therefore 0.\,\dot{3} = \frac{1}{3}$$

(ii) 
$$0.1\dot{4} = 0.14444 \dots$$
  
Let  $x = 0.14444$ 

Multiply through by 10 (Since 1 does not recur)

$$\Rightarrow 10x = 1.4444....(1)$$

Multiply (1) by 10 (Since only 4 recurs)

$$\Rightarrow 100x = 14.4444....(2)$$

| THE ONLY WAY OF LEARNING MATHEMATICS IS BY SOILING YOUR HAND |
|--------------------------------------------------------------|
| SOLVING MATHEMATICAL QUESTIONS.                              |

|                | SOLVING MATHE                                                                                                         | MATICAL QUESTIONS. |
|----------------|-----------------------------------------------------------------------------------------------------------------------|--------------------|
|                | (2) - (1) ⇒ $90x = 13$<br>$x = \frac{13}{90}$<br>∴ $0.1\dot{4} = \frac{13}{90}$                                       |                    |
| (iii)          | 1. $\dot{2}\dot{4} = 1.242424$<br>Let $x = 1.242424$ (1)                                                              |                    |
|                | Multiply through by 100 $\Rightarrow$ 100 $x = 124.242424(2)$                                                         |                    |
|                | (1) is multiplied by 100 here, so that<br>the decimal fraction to the right of the<br>decimal point, still equal (1). |                    |
|                | $(2) - (1) \Rightarrow 99x = 123$ $x = \frac{123}{99} = \frac{41}{33}$                                                |                    |
|                | $\therefore 1.\dot{2}\dot{4} = \frac{41}{33}$                                                                         |                    |
| (iv)           | $0.1\dot{3}\dot{7} = 0.1373737$<br>Let $x = 0.1373737$                                                                |                    |
|                | $10x = 1.373737 \dots (1)$                                                                                            |                    |
|                | 1000x = 137.373737 (2)                                                                                                |                    |
|                | $(2) - (1) \Rightarrow 990x = 136$ $x = \frac{136}{990}$ $x = \frac{34}{225}$                                         |                    |
|                | $x = \frac{34}{225}$ $0.\dot{1}\dot{3}\dot{7} = \frac{34}{225}$                                                       |                    |
| Evor           | 225  cise 38 Date:                                                                                                    |                    |
| Write          | e the following recurring decimal as a on. Show all your working.                                                     |                    |
| (1) 0          |                                                                                                                       |                    |
| (2) 0          | . 12 (7) 0. 25                                                                                                        |                    |
| (3) 1<br>(4) 0 |                                                                                                                       |                    |
| (5) 0          |                                                                                                                       |                    |
|                |                                                                                                                       |                    |
|                |                                                                                                                       |                    |
|                |                                                                                                                       |                    |
|                |                                                                                                                       |                    |
|                |                                                                                                                       |                    |

|             | 1 |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |

| Exercise 39             | Date:                     |   |
|-------------------------|---------------------------|---|
| Write the following     | ng recurring decimal as a |   |
| fraction. Show all      | vour working.             |   |
| (1) 0. 08               | (5) 3.132                 |   |
| (2) 0.00                | (6) 3.132<br>(6) 3.24É    |   |
| (2) 0. 123              | (6) 2.345                 |   |
| (3) 0. 104<br>(4) 2. 13 | (7) 0.127                 |   |
| (4) 2. İ3               | (8) 2.357                 |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           |   |
|                         |                           | I |

|             | Exercise 40                          | Date:                             |   |
|-------------|--------------------------------------|-----------------------------------|---|
|             | Write each of rec                    | urring decimals in the            |   |
|             | form $\frac{a}{b}$ , where $a$ , $b$ | $h \in \mathbb{Z}$ and $h \neq 0$ |   |
|             | $b_{i}^{\prime}$ where $a_{i}$       |                                   |   |
|             | 1. 0.6                               | 8. 0. 486                         |   |
|             | 2. 0.4                               | 9. 0. 810                         |   |
|             |                                      |                                   |   |
|             | 3. 0.5                               | 10. 0.93                          |   |
|             | 4. 0. 27                             | 11. 0.972                         |   |
|             | 5. 0.81                              | 12. 0.63                          |   |
|             |                                      |                                   |   |
|             | 6. 0. 24                             | 13. 0.31Ġ                         |   |
|             | 7. 0.54                              | 14. 0.283                         |   |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   | — |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   | — |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   | — |
|             |                                      |                                   |   |
|             |                                      |                                   | _ |
| <del></del> |                                      |                                   |   |
|             |                                      |                                   | _ |
|             |                                      |                                   | _ |
|             |                                      |                                   |   |
|             |                                      |                                   |   |
|             |                                      |                                   |   |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

### STANDARD FORM

A number is said to be in standard form, if it can be written in the form  $A \times 10^n$ , where  $1 \le A < 10$  and  $n \in \mathbb{Z}$ .

### NOTE:

- 1. For a whole number, the decimal place is after the last digit.
- 2. If you move the decimal place to the left, the power is positive.
- 3. If you move the decimal place to the right, the power is negative.

### Example 1

Write 7400 in standard form.

### Solution...

 $7,400 = 7.400 \times 10^3$ 

# Express the following in standard form

- (i) 196650
- (iv) 580,000,000
- (ii) 98000 (iii) 128000
- $(v) \quad 73 \times 89$

### Example 2

Express 0.0059613 in standard form.

### Solution...

 $0.0059613 = 5.9613 \times 10^{-3}$ 

| (11)  | 0.0000010 | (٧) | 0.0402 |  |
|-------|-----------|-----|--------|--|
| (iii) | 0.0000310 |     |        |  |
| ()    | 0.0000100 |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |
|       |           |     |        |  |

| Express the following in standard form.  (i) $0.04945$ (ii) $0.000344$ (iii) $0.000316 \times 10^{-7}$ (iv) $3.0 \times 10^{1} - 2.8 \times 10^{-1}$ (v) $(0.3 \times 10^{2}) \times (0.5 \times 10^{3})$ | Example 3 Evaluate $\frac{9.6 \times 10^{18}}{0.24 \times 10^5}$ , leaving your answer in standard form.  Solution $\frac{9.6 \times 10^{18}}{0.24 \times 10^5} = \frac{96 \times 10^{-1} \times 10^{18}}{24 \times 10^{-2} \times 10^5}$ $= \frac{4 \times 10^{-1+18}}{10^{-2+5}}$ $= \frac{4 \times 10^{17}}{10^3}$ $= 4 \times 10^{17-3}$ $= 4 \times 10^{14}$ $(\frac{a}{b})^m = \frac{a^m}{b^m}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                           | Exercise 4 Date:                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |

| <br>Exercise 5 Date:                                                              |
|-----------------------------------------------------------------------------------|
| <br><ol> <li>Express the product of 0.6 and 0.09 in<br/>standard form.</li> </ol> |
| <br>Standard form.                                                                |
| <br>2. Simplify $0.2 \times 0.03 \times 0.004$ and express                        |
| <br>your answer in standard form.                                                 |
| 3. Express the sum of 200.2 and                                                   |
| $4.27 \times 10^3$ in standard form.                                              |
| 4. Without using mathematical table or                                            |
| calculator, evaluate $\sqrt{\left(\frac{P}{Q}\right)}$ where                      |
| $P = 3.6 \times 10^{-3}$ and $Q = 2.25 \times 10^{6}$ ,                           |
| <br>leaving your answer in standard form.                                         |
| <br>                                                                              |
| <br><del></del>                                                                   |
| <br>                                                                              |
|                                                                                   |

| Exercise 6 Date:                                                                                                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2. Without using mathematical table or calculator, evaluate $\sqrt{\frac{0.0048\times0.81\times10^{-7}}{0.027\times0.04\times10^{6}}}$ .                                                                                   |  |
| <ul> <li>(a) Use your calculator to work out</li></ul>                                                                                                                                                                     |  |
| form.  4. Without using tables or calculators, express $\frac{(0.00042 \times 10^{-8})(15,000)}{(5000 \times 10^{7})(0.00021 \times 10^{14})}$ in the form $A \times 10^{n}$ , where $1 \le A < 10$ and $n$ is an integer. |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |

Book 1 **Standard Form** 95

|             | Exercise 7 Date:                                                                                                                                     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Solve for $n$ in the following.                                                                                                                      |
|             | 1. $0.0000568 = 5.68 \times 10^n$                                                                                                                    |
|             | 2. $5(n+3\times10^6)=4\times10^7$                                                                                                                    |
|             | $3.  \frac{7 \times 5^4}{2^3 \times 2^{-4}} = 8.75 \times 10^n$                                                                                      |
|             | $4.  4.95 \times 10^n = 0.0495$                                                                                                                      |
|             | $4.4.73 \times 10^{-3} = 0.0473$                                                                                                                     |
|             | 5. $\frac{10.0005 \times 10^{10}}{4.29 \times 10^{5}} = 5.2492 \times 10^{n}$                                                                        |
|             | 5. $\frac{2.34 \times (981)^2 \times 10^{-3}}{4.29 \times 10^5} = 5.2492 \times 10^n$ 6. $\frac{3 \times 10^4}{8 \times 10^{-2}} = 3.75 \times 10^n$ |
|             | 8×10 <sup>-2</sup>                                                                                                                                   |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
| <del></del> |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             | <del></del>                                                                                                                                          |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |
|             |                                                                                                                                                      |

### **BINARY OPERATION**

A binary operation \* on a non – empty set  $\mathbb{R}$  of real numbers is a rule which combines two elements  $a, b \in S$ , to produce a new element which may or not be in S.

Addition (+), subtraction (-), multiplication ( $\times$ ) and division ( $\div$ ) are the most familiar examples of binary operations on the set of real numbers. Intersection ( $\cap$ ) and union ( $\cup$ ) of sets are other familiar examples of binary operations. We can represent binary operations by the symbols \*,  $\Delta$ ,  $\circ$ ,  $\sim$  and so on.

### Example 1

A binary operation \* on the set of real numbers is defined by a\*b=a+b-3 Evaluate

(iii) 
$$(1*2)*3$$

(ii) 
$$\frac{1}{2} * \frac{1}{3}$$

(iv) 
$$4*(3*2)$$

### Solution...

$$a * b = a + b - 3$$

(i) 
$$2 * 3 = 2 + 3 - 3 = 2$$

(ii) 
$$\frac{1}{2} * \frac{1}{3} = \frac{1}{2} + \frac{1}{3} - 3 = -\frac{13}{6}$$

### (iii) Recall BODMAS

$$1 * 2 = 1 + 2 - 3 = 0$$
  
Now,  $(1 * 2) * 3 = 0 * 3$   
 $= 0 + 3 - 3 = 0$ 

(iv) Similarly, 
$$3 * 2 = 3 + 2 - 3 = 2$$

### Example 2

If  $x \circ y = 2x + 3y$ . Solve the equations

(i) 
$$m \circ 4 = 20$$

(iii) 
$$m \circ 3 = 4 \circ m$$

(ii) 
$$5 \circ m = 11$$

(iv) 
$$m \circ m = 1$$

### Solution...

$$x \circ y = 2x + 3y$$

(i) 
$$m \circ 4 = 20$$
  
 $2m + 3(4) = 20$   
 $2m = 20 - 12$ 

$$2m = 8$$

$$\therefore m = 4$$

(ii) 
$$5 \circ m = 11$$

$$2(5) + 3m = 11$$

$$10 + 3m = 11$$

$$3m = 1$$

$$m = \frac{1}{3}$$

(iii) 
$$m \circ 3 = 4 \circ m$$
  
 $2m + 3(3) = 2(4) + 3m$   
 $2m + 9 = 8 + 3m$   
 $9 - 8 = 3m - 2m$   
 $1 = m$   $\therefore m = 1$ 

(iv) 
$$m \circ m = 1$$
  
 $2m + 3m = 1$   
 $5m = 1$   
 $m = \frac{1}{5}$ 

| Exercise 1                       | Date:                  |
|----------------------------------|------------------------|
| If $a * b = a + 3b$ , $\epsilon$ | evaluate               |
| (i) 1 * 2                        | (iv) $5 * 3$           |
| (ii) 2 * 1                       | (v) $3*(-1)$           |
| (iii) 3 * 5                      | (vi) $2 * \frac{1}{3}$ |
|                                  |                        |
|                                  |                        |

| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
| <br> | <br> |  |

| Exercise 2                     | Date:                        | Exercise 3                   | Date:              |
|--------------------------------|------------------------------|------------------------------|--------------------|
| If $x \circ y = 2x - y$ , eval |                              | If $a * b = a^2 + b^2$ , eva |                    |
| (i) 4 · 1                      | (iv) $(-2) \circ (-4)$       | (i) 3 * 2                    | (iv) (3 * 2) * 4   |
| (1) 4 • 1                      | (1) (-2) (-4)                | (1) 3 * 2                    | (1) (3 * 2) * 4    |
| (ii) 8 ° 0                     | $(v)  (4 \circ 1) \circ 2$   | (ii) 4 * 5                   | (v) $1*(3*2)$      |
| (iii) $3 \circ (-1)$           | $(vi)$ $(3 \circ 2) \circ 1$ | (iii) 2 * 1                  | (vi) $(2*1)*(3*2)$ |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              | -                            |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           | <del></del>                  |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
|                                | <del>-</del>                 |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                | <del></del>                  |                              |                    |
|                                |                              |                              |                    |
|                                |                              |                              |                    |
|                                | <del>-</del>                 |                              |                    |
| <br>                           |                              |                              |                    |
|                                |                              |                              |                    |
|                                |                              | İ                            |                    |

| Exercise 4                 | Date:              |                                   |      |
|----------------------------|--------------------|-----------------------------------|------|
| If $a * b = 3a - b$ , solv | e the equations    |                                   |      |
| (i) $x * 2 = 7$            | (v) $x * 4 = 10$   |                                   |      |
| (ii) $x * 5 = 2$           | (vi) $4 * x = 5$   |                                   |      |
| (iii) $x * 1 = 5$          | (vii) $x * x = 12$ |                                   |      |
| (iv) $3 * x = 2$           |                    |                                   |      |
| <br>                       |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   | 3    |
|                            |                    | If $a * b = a + 2b + 2$ , solve   |      |
| <br>                       |                    | (i) $x * 3 = 12$                  | (iv) |
|                            |                    | x * x = 8                         | ()   |
|                            |                    | (ii) $2 * x = 14$                 | (v)  |
| <br>                       | <del></del>        | 3 * x = 3                         | (:)  |
|                            |                    | (iii) $x * 6 = 24$<br>x * 3x = 23 | (vi) |
|                            |                    | x * 3x = 23                       |      |
| <br>                       |                    |                                   |      |
| <br>                       |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
| <br>                       |                    |                                   |      |
|                            | <del></del>        |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |
|                            |                    |                                   |      |

| <del></del>                                  |  |
|----------------------------------------------|--|
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
| ······                                       |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
| Exercise 6 Date:                             |  |
|                                              |  |
| 1. If $a * b = \frac{ab}{a+1}$               |  |
| (i) Evaluate $2 * 3$                         |  |
| (I) Evaluate 2 * 3                           |  |
| (ii) Evaluate $\frac{1}{2} * \frac{1}{3}$    |  |
| (iii) Colve the advertism $\mu : \Gamma = 2$ |  |
| (iii) Solve the equation $x * 5 = 2$         |  |
|                                              |  |
| 2. The operation * is defined by             |  |
| a*b=a(b+2)                                   |  |
| $u \cdot v = u(v + 2)$                       |  |
| (i) Evaluate 2 * 5                           |  |
| (ii) Evaluate 1 * (2 * 3)                    |  |
| (iii) Solve the equation $4 * x = 16$        |  |
| () 22 2 wild adjusted 1 - W 20               |  |
|                                              |  |

| Exercise 7 Date:                                                       |  |
|------------------------------------------------------------------------|--|
| 1. The operation * is defined by                                       |  |
| p * q = p + q + pq                                                     |  |
| (a) Evaluate (i) $3*5$ (ii) $5*-2$                                     |  |
| (a) Evaluate (i) $3 * 5$ (ii) $5 * 2$ (b) Find $n$ , when $7 * n = 23$ |  |
| (b) Find $n$ , when $r + n = 23$                                       |  |
| (c) Find y when $\left(1*-\frac{1}{2}\right)*y=5$                      |  |
|                                                                        |  |
| $2.  \text{If } a * b = \frac{a+b}{ab}$                                |  |
| (a) Evaluate (i) $1 * 2$ (ii) $5 * 2$                                  |  |
| (iii) $(1 * 2) * \frac{1}{2}$                                          |  |
|                                                                        |  |
| (b) Solve the equations                                                |  |
| (i) $x * 3 = 2$                                                        |  |
| (ii) $5 * x = 1$                                                       |  |
| (c) Simplify $2x * 3x$ .                                               |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |
|                                                                        |  |

|                                                                                                                                                                                                                                                                    | Since $-1 * -2 = -2 * -1$ , $\therefore$ * is commutative.                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                    | <b>Example 4</b> A binary operation $*$ is defined on the set $\mathbb{R}$ of real numbers by $p*q=p^2+q^2-pq$ , show that $*$ commutative.    |
|                                                                                                                                                                                                                                                                    | Solution $* \text{ is commutative if for all } p,q \in \mathbb{R}, \\ p*q=q*p.$ Given, $p*q=p^2+q^2-pq(1)$                                     |
|                                                                                                                                                                                                                                                                    | Also $q * p = q^2 + p^2 - qp$<br>= $p^2 + q^2 - pq$ (2)                                                                                        |
|                                                                                                                                                                                                                                                                    | Since $(1) = (2)$<br>i.e. $p * q = q * p$<br>Hence * is commutative.                                                                           |
|                                                                                                                                                                                                                                                                    | <b>Example 5</b> If $x\Delta y = x^2 - y^2$ , where $x, y \in \mathbb{R}$ . If $4, 5 \in \mathbb{R}$ , show whether or not $*$ is commutative. |
|                                                                                                                                                                                                                                                                    | Solution $x \Delta y = x^2 - y^2$                                                                                                              |
|                                                                                                                                                                                                                                                                    | $4 \Delta 5 = 4^2 - 5^2 = -9$                                                                                                                  |
|                                                                                                                                                                                                                                                                    | $5 \Delta 4 = 5^2 - 4^2 = 9$                                                                                                                   |
|                                                                                                                                                                                                                                                                    | Clearly $4 \Delta 5 \neq 5 \Delta 4$<br>$\therefore \Delta$ is not commutative.                                                                |
| COMMUTATIVE PROPERTY A binary operation $*$ on the set $S$ is commutative if for all $a, b \in S$ , $a * b = b * a$ Example 3 If $x * y = x + y + 4$ , when $x, y \in \mathbb{R}$ . If $-1, -2 \in \mathbb{R}$ , show whether or not $*$ is commutative.  Solution | Exercise 8 Date:                                                                                                                               |
| x * y = x + y + 4                                                                                                                                                                                                                                                  |                                                                                                                                                |
| -1*-2 = -1 + (-2) + 4 = 1                                                                                                                                                                                                                                          |                                                                                                                                                |

-2\*-1 = (-2) + (-1) + 4 = 1

| Exercise 9 Date:                                                                                                                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1. An operation <b>③</b> is defined on the set of                                                                                                                      |  |
| real numbers $m \circledast n = \frac{-n}{m^2 + 1}$ where                                                                                                              |  |
| $m^{2}+1$                                                                                                                                                              |  |
| $m, n \in \mathbb{R}$ . If $-3, -10 \in \mathbb{R}$ , show whether or not $\circledast$ is commutative.                                                                |  |
| 2. A binary operation (*) is defined on the                                                                                                                            |  |
| 2. A biliary operation $\bigcirc$ is defined on the                                                                                                                    |  |
| set $\mathbb{Q}$ , of rational numbers $\frac{a}{b} \circledast \frac{c}{d} = \frac{a+c}{bd}$ .                                                                        |  |
| Evaluate                                                                                                                                                               |  |
| (i) $\frac{2}{3} \circledast -\frac{3}{5}$ (iii) $\frac{1}{3} \circledast \left(\frac{1}{5} \circledast \frac{2}{3}\right)$ (ii) $\frac{1}{2} \circledast \frac{3}{4}$ |  |
| (ii) $\frac{1}{2} * \frac{3}{2}$                                                                                                                                       |  |
| $\binom{2}{2} \binom{4}{4}$                                                                                                                                            |  |

| <br>Exercise 10 Date:                                   |
|---------------------------------------------------------|
| 1. $x * y = \frac{x}{y} + 3$                            |
| (a) Is operation * commutative?                         |
| (b) Find z if $z * 2 = 7$<br>(c) Find m if $m * 5 = -4$ |
| (d) Find $k$ if $4 * k = 5$                             |
| 2. $m \circ n = m^2 + 2n + 3$ .                         |
| Solve the equations                                     |
| (i) $3 \circ x = 22$<br>(ii) $x \circ 5 = 22$           |
| (iii) $x \circ x = 2$                                   |
| $(iv) \ 3 \circ (x \circ 1) = 24$                       |
| <br>                                                    |
| <br>                                                    |
| <br>                                                    |
| <br>                                                    |
|                                                         |
| <br>                                                    |
|                                                         |
|                                                         |
| <br>                                                    |
| <br>·                                                   |
| <br>                                                    |
| <br>                                                    |
| <br>                                                    |
|                                                         |

| Exercise 11 Date:                                                                       |  |
|-----------------------------------------------------------------------------------------|--|
| The operation * is defined on the set of real                                           |  |
| The operation $*$ is defined on the set of real                                         |  |
| numbers, $\mathbb{R}$ by: $x * y = \frac{x+y}{2}$ , $x, y \in \mathbb{R}$               |  |
| (i) Evaluate $3 * \frac{2}{3}$                                                          |  |
| (1) Evaluate 3 * = 5                                                                    |  |
| (i) Evaluate $3 * \frac{2}{5}$<br>(ii) If $8 * y = 8\frac{1}{4}$ , find the value of y. |  |
| (1) 11 0 y 4, 11111 1110 11 y                                                           |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |
|                                                                                         |  |

| Exercise 12 Date:                                                |  |
|------------------------------------------------------------------|--|
|                                                                  |  |
| An operation <b>③</b> is defined on the set                      |  |
| $X = \{1, 3, 5, 6\}$ by $m \circledast n = m + n + 2 \pmod{7}$ , |  |
| where $m, n \in X$ .                                             |  |
| (i) Draw a table for the operation                               |  |
| (i) Draw a table for the operation                               |  |
| (ii) Using the table, find the truth set of                      |  |
| $(\alpha) \ 3 \circledast n = 3$                                 |  |
| $(\beta) \ n \circledast n = n$                                  |  |
| $(\gamma)  n \circledast n = 3$                                  |  |
| $(\gamma)$ $n \oplus n = 3$                                      |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |

| T 1 10 D.                                                |  |
|----------------------------------------------------------|--|
| Exercise 13 Date:                                        |  |
| 1. A binary operation $*$ is defined on $\mathbb{R}^+$ , |  |
| 1. It blinds y operation is defined on 12 )              |  |
| the set of positive real numbers, by                     |  |
| $a * b = a + b + \frac{1}{2}ab$                          |  |
| $u * b = u + b + \frac{1}{2}ub$                          |  |
| (a) Find                                                 |  |
| (a) 1 mu                                                 |  |
| (i) (5 * 2) * 3                                          |  |
| (ii) The value of $x$ for which                          |  |
|                                                          |  |
| 4 * x = 19                                               |  |
| (iii) The value of $n$ for which                         |  |
|                                                          |  |
| n * n = 30                                               |  |
| (b) Determine whether or not * is                        |  |
|                                                          |  |
| commutative.                                             |  |
|                                                          |  |
| 2. If $a * b = 2a - 3b$                                  |  |
|                                                          |  |
| (i) Evaluate $-1 * -3$                                   |  |
| (ii) Solve the equation $x * 2 = 2 * x$                  |  |
|                                                          |  |
| (iii) Is the operation * commutative or                  |  |
| not?                                                     |  |
| IIUt:                                                    |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |

| Exercise 14 Date:                                        |   |
|----------------------------------------------------------|---|
| Exercise 14 Date:                                        |   |
| The operation $\Delta$ is defined on the set             |   |
| $T = \{2, 3, 5, 7\}$ by $x \Delta y = (x + y + xy)$ mod8 |   |
| (i) Construct modulo 8 table for the                     |   |
| operation $\Delta$ on the set T.                         |   |
| (ii) Use the table to find                               |   |
| (a) 2 Δ (5 Δ7)                                           |   |
| (b) $n$ such that $2 \Delta n = 5 \Delta 7$              |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
| <del></del>                                              |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          | 1 |

| Exercise 15 Date:                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------|--|
| 1. A binary ⊗ is defined on the set of real                                                               |  |
| numbers, $\mathbb{R}$ , by $m \otimes n = mn - n - 2m$ ,                                                  |  |
| where $m, n \in \mathbb{R}$ . If $5 \otimes x = 22$ , find the                                            |  |
| value of $x$ .                                                                                            |  |
|                                                                                                           |  |
| 2. Given that $x * y = 2x - y$ , where $x$ and $y$                                                        |  |
| are real numbers, find the value of                                                                       |  |
| (i) 5 * (4 * 5)                                                                                           |  |
| (ii) $y \text{ if } y * (3 * y) = 6$                                                                      |  |
| 7 The hingry energtion + is defined on the                                                                |  |
| 3. The binary operation * is defined on the set $\mathbb{P}$ of real numbers by $m * n = \frac{m-n}{n}$ . |  |
| set $\mathbb{R}$ of real numbers by $m * n = \frac{m-n}{n}$ ;                                             |  |
| $n \neq 0$                                                                                                |  |
| (a) Evaluate $3 * (5 * 2)$<br>(b) Find the truth set of $8 * k = 12 * 3$                                  |  |
| (b) I mu the truth set of $0 * k - 12 * 3$                                                                |  |
|                                                                                                           |  |

| <br> |
|------|
| <br> |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |

#### Exercise 16

Date:....

- 1. The operation \* is defined on the set  $\{0, 1, 2, 3, 4\}$  by the relation a \* b = the remainder when  $a \times b$  is divided by 3. E.g. 3 \* 2 = 0, since  $3 \times 2 = 6$  and  $\frac{6}{3} = 2$  remainder 0.
  - (a) Construct an operation table for the operation \* on the set given.
  - (b) Is there an identity element?
  - (c) Find x if 2 \* x = 1.
  - (d) Find *y* if y \* 1 = 2.
- 2. The operation table is shown.

| 0 | W | x | у | Z |
|---|---|---|---|---|
| W | х | Z | W | y |
| x | Z | у | x | W |
| y | W | x | у | Z |
| Z | γ | w | Z | x |

#### Find

- (a) the identity element
- (b) the inverse of w
- (c) the inverse of z
- (d) the inverse of x
- 3. The operation table for \* is shown.

| * | а | b | С | d |
|---|---|---|---|---|
| а | а | b | С | d |
| b | b | а | d | С |
| С | С | d | а | b |
| d | d | С | b | а |

#### Find.

- (a) the identity element
- (b) b \* d
- (c) (b\*d)\*b
- (d) the inverse of *d*
- (e) x if a \* x = c

(f) 
$$y$$
 if  $y * c = d$ 

4. The operation table for **③** is shown.

| * | Α | В | C | D | E |
|---|---|---|---|---|---|
| Α | С | D | Е | Α | В |
| В | D | Е | A | В | С |
| С | Е | Α | В | С | D |
| D | A | В | С | D | Е |
| Е | В | С | D | E | Α |

#### Find

- (a) the identity element
- (b) the inverses of A and C
- (c) A \* C
- (d) (A \* C) \* D
- (e) (B \* E) \* \* (D \* A)
- (f)  $X \text{ if } X \circledast C = A$
- (g) Y if Y  $\circledast$  Y = B
- (h)  $Z \text{ if } (Z \circledast B) \circledast C = A$

Is the set {A, B, C, D, E} closed under ⊛?

- 5. Construct an operation table for the operation  $\circ$  on the set  $\{1, 2, 3, 4\}$ , where  $a \circ b =$  the remainder when  $a \times b$  is divided by 5.
  - (a) What is the identity element?

Solve the equations

- (b)  $x \circ 3 = 1$
- (c)  $x \circ x = 4$
- (d)  $(4 \circ 2) \circ x = 1$
- (e)  $x \circ (3 \circ 3) = 3$
- (f)  $x \circ (x \circ 2) = 3$
- (g)  $(x \circ 3) \circ x = 3$
- 6. The operation table for the set  $X = \{a, b, c, d, e, f\}$  under the operation \* is shown.

| * | а | b | С | d | e | f |
|---|---|---|---|---|---|---|
| а |   |   |   | С |   |   |
| b | а |   |   |   |   |   |
| С |   | d |   | а |   |   |
| d |   | b |   |   |   |   |
| е |   | е | С |   |   |   |
| f | d | f | b | е | а |   |

Complete the table, given that

- (a) the operation \* is commutative,
- (b) each element of X appears just once in each row and column,
- (c) the set X is closed under \*.

(There may be more than one solution)

7. Repeat question **7** for the operation tables below which are subject to the same conditions.

| (a) |   |   |   |   |   |   |
|-----|---|---|---|---|---|---|
| *   | а | b | С | d | e | f |
| а   |   | а | b |   |   |   |
| b   |   |   | d |   | е |   |
| С   |   |   |   |   | С |   |
| d   | С |   |   | b |   | e |
| e   | f |   |   |   |   |   |
| f   |   | b |   |   |   |   |

| ( | (b) |   |   |   |   |   |   |
|---|-----|---|---|---|---|---|---|
|   | *   | 1 | 2 | 3 | 4 | 5 | 6 |
| Ī | 1   |   | 3 | 6 |   |   |   |
| Ī | 2   |   |   | 5 |   | 4 |   |
| Ī | 3   |   |   |   |   | 1 |   |
| Ī | 4   |   |   |   |   | 5 | 4 |
| Ī | 5   | 2 |   |   |   |   |   |
| Ī | 6   |   | 6 |   |   |   |   |

#### Exercise 17 Date:.....

- 1. A binary operation \* is defined on the set of rational numbers by  $m*n=\frac{m^2-n^2}{2mn}$ .
  - (a) Find -3 \* 2.
  - (b) Show whether or not \* is associative.
- 2. The binary operation \* is defined on the set of real numbers,  $\mathbb{R}$ , by  $a*b=\frac{a}{b}+\frac{b}{a}$ . If  $(\sqrt{x}+1)*(\sqrt{x}-1)=4$ , find the value of x.
- 3. Two binary operations \* and  $\nabla$  are defined as follows  $p*q=\frac{1}{p}+\frac{1}{q}$  and  $p\nabla q=\frac{1}{p}-\frac{1}{q}$  where  $p\neq 0$  and  $q\neq 0$ . If  $p=\frac{3}{5}$  and  $q=\frac{1}{3}$ , evaluate
  - (i) p\*q
  - (ii) *p* ∇ *q*
  - (iii)  $\frac{p*q}{p \nabla q}$
  - (iv) If  $p * q = \frac{1}{p \nabla q}$ , evaluate  $p^2 \nabla q^2$ .
- 4. A binary operation \* is defined on the set  $\mathbb{R}$  of real numbers by  $a*b = \frac{1+ab}{a+b}$ ,  $a \neq -b$ .
  - (i) Is the operation closed?

- (ii) Find the identity element *e* under the operation.
- (iii) Find the inverse under the operation.
- (iv) Is the operation associative?
- 5. A binary operation  $\otimes$  is defined on the set  $\mathbb{R}$  of real numbers by  $x \otimes y = \frac{x+y}{1+xy}$ , where  $x, y \in \mathbb{R}$ ,  $xy \neq -1$ . Determine whether or not the operation  $\otimes$  is
  - (i) commutative.
  - (ii) associative.

6.

- (a) Let \* be a binary operation on a non– empty set S. State what it meansfor
  - (i) \* to be associative;
  - (ii) \* to be commutative;
  - (iii) *e* to be an identity element of *S*.
- (b) Let  $S = \{a, b, c, d\}$  and define a binary operation \* on S by the multiplication table.

| * | а | b | С | d |
|---|---|---|---|---|
| а | d | а | b | b |
| b | а | b | С | d |
| С | а | С | d | b |
| d | b | d | а | С |

- (i) Find an identity element of *S* with respect to \*.
- (ii) Determine which (if any) elements have an inverse, in each case giving the inverse.
- (iii) Determine whether \* is commutative, briefly justifying your answer.
- (iv) Show that \* is not associative.

#### **ALGEBRAIC EXPRESSIONS**

In algebra, letters can be used to stand for numbers. A pronumeral is a letter that stands for a number. If a pronumeral could represent any number rather than just one, it is also called a variable.

• The parts of an algebraic expression are called terms. Terms are separated from each other by + or - signs. So a-b is an expression with two terms, but ab is an expression with only one term and  $3 + \frac{a}{b} - \frac{b}{4}$  is an expression with three terms

#### ADDITION AND SUBTRACTION OF LIKE TERMS

Algebraic terms that have the same variable factors are called like terms. 3x and 4x are like terms,  $x^2y$  and  $5x^2y$  are like terms. The variables and any indices attached to them have to be identical for them to be like terms.

**NOTE:** Variables in a different order mean the same thing, so xy and yx are like terms. When the algebraic terms have different variable factors, they are called unlike terms so 2x and 3y are unlike terms. So  $x^2y$  and  $xy^2$  are unlike terms.

Like terms can be added or subtracted to simplify algebraic expressions. The distributive properties of arithmetic are

use to simplify algebraic sums of like terms.

If *a*, *b* and *c* are rational numbers then,

$$a(b+c) = ab + ac$$
$$(a+b)c = ac + bc$$

$$a(b-c) = ab - ac$$

$$(a-b)c = ac - bc$$

#### Example 1

Simplify the following.

- 1. 7a + 10a
- 2. 8x 5x 2x
- 3. 3t + 4t t
- 4. 3a + 5b + 2a b
- 5. 13a + 8b + 2a 5b 4a

#### Solution..

- 1. 7a + 10a = (7 + 10)a = 17a
- 2. 8x 5x 2x = (8 5 2)x= x
- 3. 3t + 4t t = (3 + 4 1)t= 6t
- 4. 3a + 5b + 2a b = 3a + 2a + 5b b= (3 + 2)a + (5 - 1)b= 5a + 4b
- 5. 13a + 8b + 2a 5b 4a= 13a + 2a - 4a + 8b - 5b= (13 + 2 - 4)a + (8 - 5)b= 11a + 3b

#### Exercise 1

Date:.....

Simplify the following.

- 1. 3x + 4x
- 2. 5x + 3x + x
- 3. 7x 3x
- 4. 4y 8y 16y
- 5. 3a + 8 + 6a
- 6. 4x + 5y + 6x + 7y
- 7. 20y 32x 36x + 8y
- 8. 5a + 2a + b + 8b
- 9. 3x + 7x + 3y 4x + y
- $10.\ 10 + 7y 3x + 5x + 2y$

| <del></del>                                                |                                                |
|------------------------------------------------------------|------------------------------------------------|
|                                                            |                                                |
|                                                            |                                                |
| Exercise 2 Date:                                           |                                                |
| Simplify the following.                                    |                                                |
| 1. $2p - q - 3q - 5p$                                      |                                                |
| 2. $2x - 6y + 3x + 2y$                                     |                                                |
| 3. $-8a + 7b - a - 2b$                                     |                                                |
| 4. $4c + 2b - c + 6b$                                      |                                                |
| 5. $4x^2 - 2x^2$                                           |                                                |
| 6. $10xy^2 - 8xy^2$                                        |                                                |
| 7. $13x^2y - 4x^2y$                                        |                                                |
| 8. $12x^2 - 4x + 2x^2$                                     |                                                |
| 9. $5x^2 + 3x^2 - 2xy + 3xy$                               |                                                |
| $10.\ 3xy + 4xy + 5xy$<br>$11.\ 5uv + 12v + 4uv - 5v$      |                                                |
| $11. \ 5uv + 12v + 4uv - 5v$ $12. \ 5w + 7p^2 - 4w + 3p^2$ | Exercise 3 Date:                               |
| 13. $3x^2 + 4x + 12x^2 - 5x$                               | Simplify the following.                        |
| 13. 3%   1%   12% 3%                                       | 1. $4f^2 - 3y + 4y - 9f^2$                     |
|                                                            | $2.  3x^2 + 6xy - 3y^2 + 4x^2 - 8xy + 2y^2$    |
|                                                            | 3. $2x - 6y + 3x + 2y$                         |
|                                                            | 4. $5x^3 - 3x^3 + 7x^3$                        |
|                                                            | 5. $5a + 4b - 2a - b + 3a - 2b$                |
|                                                            | 6. $6a + 5h - 4a - 8h$                         |
|                                                            | 7. $7e - 5f + 4e - f$                          |
|                                                            | 8. $2a - b + 5a - 3b$<br>9. $5j + 2k + j - 3k$ |
|                                                            | 10. $10x - 15 - 6x + 8$                        |
|                                                            | 11. $5t - 2t + 4t$                             |
|                                                            |                                                |
|                                                            |                                                |
|                                                            | <del></del>                                    |
| <del></del>                                                |                                                |
|                                                            |                                                |
|                                                            |                                                |
|                                                            |                                                |
|                                                            |                                                |
|                                                            |                                                |

| <del></del>                                                     |  |
|-----------------------------------------------------------------|--|
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
| <del></del>                                                     |  |
|                                                                 |  |
|                                                                 |  |
| Exercise 4 Date:                                                |  |
| Simplify the following.                                         |  |
| 1. $4 + x + 4xy + 2xy + 5x$<br>2. $10 - 3xy + 8x + 4 + 9xy - 7$ |  |
| 3. $12mn + 3m + 2n + 5nm$                                       |  |
| 4. $7u + 3v + 2uv - 3u$                                         |  |
| 5. $12b + 4a + 2b + 3a + 4$<br>6. $xy - 2xz + 7xy$              |  |
| 7. $12x^2 - 4x^2 + 2x^2$                                        |  |
| 8.  4xyz - 3xy + 2xz - xyz                                      |  |
| 9. $5xy - 4 + 3yx - 6$                                          |  |
| $10.\ 9xy + 3x + 6xy - 2x$                                      |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |

#### MULTIPLICATION OF ALGEBRAIC **EXPRESSIONS** Example 2 Simplify the following. 1. $2b \times b$ $2. 6a \times 3b$ 3. $3xy \times 7xy$ Solution... 1. $2b \times b = 2 \times b \times b = 2b^2$ 2. $6a \times 3b = 6 \times 3 \times a \times b = 18ab$ 3. $3xy \times 7xy = 3 \times 7 \times x \times x \times y \times y$ $=21x^2v^2$ Exercise 5 Date:.... EXPANDING BRACKETS Simplify the following. The distributive properties are also used 6. $4xy^2 \times 2x^2y$ 1. $3 \times a \times b$ 2. $4m \times m$ 7. $3 \times 2x \times 5$ a(b+c) = ab + ac3. $3x \times 5x$ 8. $2x \times 3y \times 2xy$ 4. $2x \times 3y \times 2$ 9. $9 \times x^2 \times xy$ 5. $8abc \times 2ab$ 10. $2cb \times 3a \times 4d$ a(b-c) = ab - acExample 3 Expand each of the following. 3. $\frac{1}{4}(16y - 20x)$ 1. 3(x + y)2. 2b(a - b)Solution... 1. 3(x + y) = 3x + 3y2. $2b(ab-b) = 2ab-2b^2$ 3. $\frac{1}{4}(16y - 20x) = \frac{1}{4} \times 16y - \frac{1}{4} \times 20x$ = 4y - 5xExercise 6 Date:.... Expand the following expressions. 1. 8(a+4)2. 9(e-7)3. 7(6-x)4. 5(2x + 4y + 3z)5. -3(y-3t+4m)

| <del></del>                        |  |
|------------------------------------|--|
|                                    |  |
|                                    |  |
|                                    |  |
| Exercise 7 Date:                   |  |
| Expand and simplify the following. |  |
| 1. $2(5+x)+3x$                     |  |
| 2. $3(y-2)+4y$                     |  |
| 3. $2z + 3(z - 4)$                 |  |
| 4. $3-2(x-1)$                      |  |
| 5. $5a - 4(a - 2b)$                |  |
|                                    |  |
| 6. $2(x-2) + 2(x+3)$               |  |
| 7. $3(x+2) + 4(x+5)$               |  |
| 8. $4(2r-3)-5(6r+9)$               |  |
| 9. $6(2y-3)-5(y+1)$                |  |
| 10. $5(x + 3) + 4(2x - 6)$         |  |
|                                    |  |
|                                    |  |
| <del></del>                        |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
| <del></del>                        |  |
|                                    |  |

| <del></del>                        |   |
|------------------------------------|---|
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
| Exercise 8 Date:                   |   |
| Expand and simplify the following. |   |
| 1. $3(2x-1)-4(x-5)$                |   |
| 2. $4(x-2) + 3x(4-y)$              |   |
| 3. $x(2x+3)+3(5-2x)$               |   |
| 4. $x(2x+3) + 5(x-7)$              |   |
| 5. $3x(x-2) - 2x(3x-5)$            |   |
| 6. $x(x+3) + 4x(x-1)$              |   |
| 7. $3(4xy - 2x) + 5(3x - xy)$      |   |
| 8. $3x(4-8y) + 3(2xy-5x)$          |   |
|                                    |   |
| 9. $3x^2(4-x) + 2(5x^2-2x^3)$      |   |
| $10.\ 5x(x+7y) - 2x(2x-y)$         |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    |   |
|                                    | 1 |

| <del></del>                                                                   |   |
|-------------------------------------------------------------------------------|---|
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
|                                                                               |   |
| Exercise 9 Date:                                                              |   |
| Expand and simplify                                                           |   |
| 1. $4(2x + 1) - 3x$                                                           |   |
| 2. 8x - 3(2+x) + 4                                                            |   |
| 2. $0\lambda = 3(2 \pm \lambda) \pm 3$<br>2. $2(2\alpha + 1) = (5 + 2\alpha)$ |   |
| 3. $2(3x-1)-(5-2x)$                                                           |   |
| 4. $x(2x+5)-9$                                                                |   |
| 5. $5(7y+3)-18y$                                                              |   |
| 6. $6(3-x)-(x+1)$                                                             |   |
| 7. $3x(x-7) - 8(x-5)$                                                         |   |
| 8. $15 - 3(4x - 5)$                                                           |   |
| 9. $7x + 5 - 3(x - 4)$                                                        |   |
| · · · · · · · · · · · · · · · · · · ·                                         | 1 |

|   | Exercise 10 Date:               |
|---|---------------------------------|
|   | Expand and simplify             |
|   | 1. $2(a+3)+3(a+1)$              |
|   | 2. $5(2x+1)-2(x-1)$             |
|   | 3. $5(2x+5)-4(x+2)$             |
|   | 4. $2(a-7)-3(a-9)$              |
|   | 5. $-3(w-5) + 3(w+5)$           |
|   | 6. $-5(3h+1)-(2h-5)$            |
|   | 7. $-2a(3a+b)+b(a+4)$           |
|   | 8. $-(x+1) - 4(x-1)$            |
|   | 9. $7(x^2 - x + 1) - 3(2x - 1)$ |
|   | 10. $x - (x - (x - (x - 1)))$   |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
| · |                                 |
|   |                                 |
|   |                                 |

|             | Exercise 11 Date:                                                            |
|-------------|------------------------------------------------------------------------------|
|             | Simplify as far as possible.                                                 |
|             | 1. $7(3x-4y)-3(5x+2y)$                                                       |
|             | 2. $3x - 5(4x - 2)$                                                          |
|             | 3. $2(3x+4)-2(2-x)$                                                          |
|             | 4. $2(3x-4)-5(x-3)$                                                          |
|             | 5. $(-2p - 3q + 5) + (3p - 4q - 6)$                                          |
|             | 6. $(4x + 3y - 5z) - (2x - 3y + 4z)$                                         |
|             | 7. $2(3x - x^2) + 2(x^3 - 3x + 4)$                                           |
| <del></del> | 8. $2(6x - 5z + 3y) - (5y - 2x + z)$                                         |
|             | 9. $3x - (p - x) - (r - p)$<br>10. $x(y + z) + y(x + z) - z(x + y)$          |
|             | $10. \lambda(y+2) + y(\lambda+2) - 2(\lambda+y)$ $11. 3[4x - 5(3x - 5)] - 1$ |
|             | $\begin{bmatrix} 11.5[1x & 5(5x & 5)] & 1 \end{bmatrix}$                     |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |
|             |                                                                              |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

### ALGEBRAIC FRACTIONS CANCELLATION

Number fractions can be simplified by cancelling common factors.

For example,  $\frac{12}{20} = \frac{4 \times 3}{4 \times 5} = \frac{3}{5}$ , where the common factor 4 was cancelled.

The same principle can be used to algebraic fractions:

If the numerator and denominator of an algebraic fraction are both written in factored form and the common factors are found, we can simplify by cancelling the common factors.

For example, 
$$\frac{8xy}{2x} = \frac{2 \times 2 \times 2 \times x \times y}{2 \times x} = \frac{4y}{1} = 4y$$

#### **ILLEGAL CANCELLATION**

A fraction such as:  $\frac{x+2}{2}$ 

The expression in the numerator, x + 2, cannot be written as the product of factors other than  $1 \times (x + 2)$ . x and x are terms of the expression, not factors.

Error in cancellation:  $\frac{x+2}{2} = \frac{x+1}{1} = x + 1$ .

#### NOTE:

When cancelling in algebraic fractions, only factors can be cancelled, not terms.

#### Exercise 12

Simplify. 1. 
$$\frac{2x}{}$$

1. 
$$\frac{2x}{5x}$$

3. 
$$\frac{21x}{7x}$$

$$5. \ \frac{2ab}{40y}$$

Date:....

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |

| · |  |  |  |
|---|--|--|--|
| · |  |  |  |
| · |  |  |  |
| · |  |  |  |
| · |  |  |  |
| · |  |  |  |
| • |  |  |  |
| · |  |  |  |
| • |  |  |  |
|   |  |  |  |

#### 

| 1  | $\frac{15x^2y^3}{15x^2}$ | • |
|----|--------------------------|---|
| 1. | $3xy^4$                  |   |

4. 
$$\frac{(2a)^2}{4a^2}$$

$$2. \quad \frac{8abc^2}{4bc}$$
$$3. \quad \frac{(2a)^2}{}$$

| 5. | $(3a^2)^2$ |
|----|------------|
|    | $18a^{3}$  |

| Exercise 14 Date:                                                                                                                                                                                         |                                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ | <del></del>                                                                   |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ | <del></del>                                                                   |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| Simplify if possible.  1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$ |                                                                               |  |
| 1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$ 2. $\frac{4(t+1)}{2}$ 6. $\frac{(x+3)(x+1)}{4(x+2)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$                                                       | Exercise 14 Date:                                                             |  |
| 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$                                                                                                                                     | Simplify if possible.                                                         |  |
| 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$                                                                                                                                     | 1. $\frac{2(t-1)}{2}$ 5. $\frac{x^2(x+1)}{x(x+1)(x-1)}$                       |  |
| 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$                                                                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                         |  |
| 3. $\frac{(x+2)(x+5)}{5(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x-1)^2x^2}$                                                                                                                                     | 2. ${2}$ 6. ${4(x+2)}$                                                        |  |
| A = (x+5)(2x-1)                                                                                                                                                                                           | 3. $\frac{(x+2)(x+5)}{(x+2)(x+5)}$ 7. $\frac{(t+2)^2(x-1)^2}{(x+2)^2(x+5)^2}$ |  |
| 4. $\frac{3(2x-1)}{3(2x-1)}$                                                                                                                                                                              |                                                                               |  |
|                                                                                                                                                                                                           | 4. $\frac{3(2x-1)}{3(2x-1)}$                                                  |  |

| <br>WORD PROBLEM                                                                        |
|-----------------------------------------------------------------------------------------|
| If $x$ represents an unknown number, then:                                              |
| <br>1. 3 more than the number: $x + 3$ .                                                |
| 2. 4 less than the number: $x - 4$ .                                                    |
| 3. 8 times the number: $8x$                                                             |
| <br>4. Half the number $\frac{x}{2}$ .                                                  |
| 5. 3 times the number is subtracted from 2 and the result is multiplied by 9: $9(3-3x)$ |
| 6. 5 less than the number and result is 3 times the number: $x - 5 = 3x$ .              |
| <br>7. 6 more than $\frac{1}{3}$ the number and the result                              |
| is $4:\frac{1}{3}x+6=4$ .                                                               |
| <br>8. 1 more than 3 times the number is 4 less than 5 times the number:                |
| <br>3x + 1 = 5x - 4.                                                                    |
|                                                                                         |
| Exercise 15 Date:                                                                       |
| Write an expression for each of the following.                                          |
| <br>1. 6 more than <i>p</i> .                                                           |
| <br>2. 8 less than <i>m</i> .                                                           |
| 3. The sum of $t$ and $q$ .                                                             |
| 4. Four times <i>q</i> .                                                                |
| <br>5. The product of $p$ and $q$ .                                                     |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
| <br>                                                                                    |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
| <br>- <del></del>                                                                       |
|                                                                                         |
|                                                                                         |
| <br>Exercise 16 Date:                                                                   |
| <br>Write an expression for each of the following.                                      |
| 1. 2 more than x                                                                        |
| <br>2. The sum of <i>p</i> and 7                                                        |
| <br><ul><li>3. Double the value of <i>m</i></li><li>4. 8 lots of <i>q</i></li></ul>     |
| <br>4. 8 lots of <i>q</i> 5. Half of <i>x</i>                                           |
| э. паногх                                                                               |

|                                                                                                                                                                                                                                                                                                                                   | from 13.                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |
| Exercise 17 Date:  Write an expression for each of the following 1. 21 less than <i>t</i> 2. The product of <i>v</i> and 6                                                                                                                                                                                                        | Exercise 19 Date:                                                                                                                                                                                                                                                                             |
| <ul> <li>3. 9 less than p</li> <li>4. One third of m</li> <li>5. q is subtracted from 3</li> </ul>                                                                                                                                                                                                                                | <ul> <li>(a) Write an expression in terms of n for:</li> <li>(i) the sum of a number and 12</li> <li>(ii) twice a number minus four</li> <li>(iii) a number multiplied by x and then squared</li> <li>(iv) the square of a number cubed.</li> </ul>                                           |
|                                                                                                                                                                                                                                                                                                                                   | <ul> <li>(b) Two positive whole number p and q are such that p is greater than q and the sum is equal to three times their difference</li> <li>(i) express p in terms of q</li> </ul>                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                   | (ii) hence, evaluate $\frac{p^2+q^2}{pq}$ .                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                   | (i) What is the result of subtracting $3x^2 - 4x - 1$ from $4x^2 + x + 1$ ?<br>(ii) Subtract $(-y + 3x + 5z)$ from $(4y - x - 2z)$ .                                                                                                                                                          |
| <ul> <li>Exercise 18 Date:</li> <li>Write an expression for each of the following:</li> <li>1. 7 is added to x, then the result is doubled.</li> <li>2. x is tripled, then 5 is added.</li> <li>3. y is multiplied by 6, then 7 is subtracted.</li> <li>4. 2 is subtracted from p, then the result is multiplied by 7.</li> </ul> | (iii) Subtract $\frac{1}{2}(a-b-c)$ from the sum of $\frac{1}{2}(a-b-c)$ and $\frac{1}{2}(a-b-c)$ .  (iv) By how much is the sum of $3x$ , $(6x-5)$ , $9x$ and $(4x+1)$ less than $30x$ .  (v) Simplify $\alpha$ ) $3a^2b^3 \times 4a^3b$ $\beta$ ) $3x^2 + 6xy - 3y^2 + 4x^2 - 8xy + 2y^2$ . |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| <del></del>                                 |  |
|---------------------------------------------|--|
|                                             |  |
|                                             |  |
|                                             |  |
|                                             |  |
|                                             |  |
|                                             |  |
|                                             |  |
|                                             |  |
|                                             |  |
| <del>_</del>                                |  |
|                                             |  |
|                                             |  |
|                                             |  |
|                                             |  |
| MULTIPLICATION OF TWO BINOMIALS             |  |
|                                             |  |
| (a+b)(c+d) = a(c+d) + b(c+d)                |  |
| = ac + ad + bc + bd                         |  |
| Emanuela 4                                  |  |
| Example 4 Expand and simplify the following |  |
| 1. $(x+1)(x+2)$                             |  |
| 1. $(x+1)(x+2)$<br>2. $(x+3)(3x-2)$         |  |
| 2.  (x+3)(3x-2)                             |  |
| Solution                                    |  |
| 1. $(x+1)(x+2) = x(x+2) + 1(x+2)$           |  |
| $= x^2 + 2x + x + 2$                        |  |
| $= x^2 + 3x + 2$                            |  |
| <i>n</i> 1 3 <i>n</i> 1 2                   |  |
| 2. $(x+3)(3x-2) = x(3x-2) + 3(3x-2)$        |  |
| $=3x^2-2x+9x-6$                             |  |
| $=3x^2+7x-6$                                |  |
|                                             |  |
| Exercise 20 Date:                           |  |
| Expand and simplify the following.          |  |
| 1. $(x+2)(x+3)$                             |  |
| 2. $(x-2)(x+3)$                             |  |
| 3. $(x-2)(x-3)$                             |  |

4. (2x+5)(3x-4)

| Exercise 21 Date:                  |                                                   |
|------------------------------------|---------------------------------------------------|
| Expand and simplify the following. |                                                   |
|                                    |                                                   |
| 1. $(2x - 3y)(3x + 4y)$            |                                                   |
| 2. $(2p+3)(3p-2)$                  |                                                   |
| 3. $(3a-2b)(4a+3b)$                |                                                   |
| 4. $(3x+2)(2x-4)$                  |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    |                                                   |
|                                    | Exercise 22 Date:                                 |
|                                    | Expand and simplify                               |
|                                    | 1. $(m+5)(m-1)$                                   |
|                                    | $\begin{array}{cccc} 2. & (a+4)(a-3) \end{array}$ |
|                                    | 3. $(m-n)(m+n)$                                   |
|                                    |                                                   |
|                                    | 4. $(m-5)(m-1)$                                   |
|                                    | 5. $(x+3)(x+2) + x^2 - 1$                         |
|                                    | 6. $(x+4)^2 + 2x - 3$                             |
|                                    |                                                   |
|                                    |                                                   |
|                                    | 7. $(x+4)(x+1)-(x+1)$                             |
|                                    |                                                   |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <br>        |  |
|             |  |
|             |  |
| <br>        |  |
|             |  |
|             |  |

| Exercise 23 Date:                                                                                   |  |
|-----------------------------------------------------------------------------------------------------|--|
| Expand and simplify the following.                                                                  |  |
| 1. $(2t-5)(t-4)$                                                                                    |  |
| 2. $(2a-1)(3a+2)$                                                                                   |  |
| 2. $(2u - 1)(3u + 2)$<br>2. $(2u - 2u)(u - 2u)$                                                     |  |
| 3. $(3x - 2y)(x - 3y)$                                                                              |  |
| 4. $(1-2x)(4x+1)$                                                                                   |  |
| 5. $(x^2 + 2x + 3)(x - 1)$                                                                          |  |
| 6. $(2x^2 - 3x + 1)(2 - 3x)$                                                                        |  |
| 7. $(3x^2 - 2x - 4)(3 - 5x)$                                                                        |  |
| 8. $(x^2 + 2x + 1)(x - 2)$                                                                          |  |
| 9. $(x + 2x + 1)(x - 2)$<br>9. $(x - 1)(2x + 3)(x + 4)$                                             |  |
| 9. $(x-1)(2x+3)(x+4)$                                                                               |  |
| 10. $\left(a^{\frac{1}{2}} - b^{\frac{1}{2}}\right) \left(a^{\frac{1}{2}} + b^{\frac{1}{2}}\right)$ |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |
|                                                                                                     |  |

|             | Example 5                                   |
|-------------|---------------------------------------------|
|             | Expand and simplify.                        |
| <del></del> | 1. $(x+2)^2$ 3. $(3-2x)^2$                  |
|             | 2. $(4x+1)^2$                               |
|             |                                             |
|             | Solution                                    |
|             | 1. $(x+2)^2 = (x+2)(x+2)$                   |
|             | = x(x+2) + 2(x+2)                           |
|             | $= x^2 + 2x + 2x + 4$                       |
|             | $= x^2 + 4x + 4$                            |
|             | <i>x</i> 1 <i>x</i> 1 1                     |
|             | 2. $(4x + 1)^2 = (4x + 1)(4x + 1)$          |
|             | = 4x(4x+1) + 1(4x+1)                        |
|             | $= 16x^2 + 4x + 4x + 1$                     |
|             | $= 16x^{2} + 1x + 1$ $= 16x^{2} + 8x + 1$   |
|             | -10x + 0x + 1                               |
|             | 3. $(3-2x)^2 = (3-2x)(3-2x)$                |
|             | = 3(3-2x) - 2x(3-2x) $= 3(3-2x) - 2x(3-2x)$ |
|             | $= 9 - 6x - 6x + 4x^{2}$                    |
|             | $= 9 - 6x - 6x + 4x$ $= 9 - 12x + 4x^{2}$   |
|             | = 7 121 1 41                                |
|             | Exercise 24 Date:                           |
|             | Expand and simplify.                        |
|             | 1. $(x+3)^2$ 4. $(3x+4)^2$                  |
|             | 2. $(x-5)^2$ 4. $(3x+4)^2$                  |
|             | 3. $(4-y)^2$                                |
|             | 3.  (4-y)                                   |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
| <del></del> |                                             |
|             |                                             |
|             |                                             |
| <del></del> |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             | I                                           |

|             | Exercise 25 Date:         |
|-------------|---------------------------|
|             | Expand and simplify.      |
|             | 1. $3x + 1 + (x - 2)^2$   |
|             | 2. $5x + 2 - (x + 2)^2$   |
|             | 3. $3(x-1)^2 + (x-1)$     |
|             | 4. $(2x-3)^2 - 3x(x-4)$   |
|             | 5. $16 - 4(3x - 2)^2$     |
|             | 6. $(1-x)^2 + (x+2)^2$    |
|             | 7. $(2x+3)(2x-3)-(x+1)^2$ |
|             | 8. $2(x-3)^2 - (2x-3)^2$  |
|             |                           |
|             |                           |
|             |                           |
| <del></del> |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |
|             |                           |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | 1 |

| Exercise 26 Date:                                      |  |
|--------------------------------------------------------|--|
| 1. Expand and simplify the following.                  |  |
| (i) $(3x+1)^2 - 2(2x-3)^2$                             |  |
| (ii) $(2x+5)^2 - (x-3)^2$                              |  |
| (iii) $(x + 4)(5x - 3) - 3(x - 2)^2$                   |  |
| (iv) $(2x+1)(x-3)(x+4)$                                |  |
| (v) $(x-5)(x^2+3)-(x+4)(x-1)$                          |  |
|                                                        |  |
| 2.                                                     |  |
| (i) Find the coefficient of $x^3$ in the               |  |
| expansion of                                           |  |
| $(2x^3 - 3x^2 + 4x - 3)(x^2 - 2x + 1)$                 |  |
| (ii) Find the coefficient of $x^4$ in the expansion of |  |
| $x(x^2 + 2x + 3)(x^2 + 7x - 2)$                        |  |
| (iii) The coefficient of $x^2$ in the expansion        |  |
| of $(x + 3)(x + k)(2x - 5)$ is $-3$ . Find             |  |
| the value of the constant $k$                          |  |
| (iv) Expand $(x-2)^2(x+1)$ , simplifying               |  |
| your answer.                                           |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |

#### **FACTORIZATION**



#### Example 1

Factorize each of the following

- 1. 2x + 4
- 2.  $3a^2 + a$
- 3.  $4xy + 8y^2$

#### Solution...

- 1. 2x + 4 = 2(x + 2)
- 2.  $3a^2 + a = a(3a + 1)$
- 3.  $4xy + 8y^2 = 4y(x + 2y)$

#### Exercise 27

#### Date:.....

Factorize the following

|      |           | <br>0 |            |  |
|------|-----------|-------|------------|--|
| 1.   | 12m - 36  | 5.    | 3uv + 9vw  |  |
| 2.   | 3x + 6    |       | 15pq + 21p |  |
|      | 13v - 26t |       | 2xy - 4yz  |  |
|      |           | /.    | 2xy - 4yz  |  |
| 4.   | 3p - 15q  |       |            |  |
| <br> |           | <br>  |            |  |
|      |           |       |            |  |
| <br> |           | <br>  |            |  |
|      |           |       |            |  |
|      |           |       |            |  |
|      |           |       |            |  |
|      |           |       |            |  |
| <br> |           | <br>  |            |  |
|      |           |       |            |  |
| <br> |           | <br>  |            |  |
|      |           |       |            |  |
|      |           |       |            |  |
|      |           | <br>  |            |  |
|      |           |       |            |  |
| <br> |           | <br>  |            |  |
|      |           |       |            |  |
| <br> |           | <br>  |            |  |
|      |           |       |            |  |
| <br> |           |       |            |  |
|      |           |       |            |  |
|      |           |       |            |  |
|      |           |       |            |  |

|  | <br> | <br> |  |
|--|------|------|--|

#### Exercise 28 Factorize fully

#### Date:....

#### 1. $x^2 + x$

1. 
$$x^2 + x$$

2. 
$$4x^2 + 4$$

3. 
$$9m^2 - 18m$$

$$i - 1$$

6.  $12ax^3 + 18xa^3$ 

4. 
$$a^2 - ab$$

5. 
$$3p^2 - 6pq$$

7. 
$$20p + 25p^2$$
  
8.  $15c^2 - 5c$ 

9. 
$$5a^2b + ab^2$$

10. 
$$ax^2 + bx^2$$
  
11.  $7x^7 + 14x^{14}$ 

12. 
$$6x^2 + 6x$$

|             | Exercise 29 Date:                                     |
|-------------|-------------------------------------------------------|
|             | Factorize the following expressions                   |
|             | 1. $3k^2 + 5klm$ 4. $\frac{1}{4}ax^2 + \frac{1}{8}ax$ |
|             | 2. $5mp - 3mnq$ 5. $\frac{4}{81}v - \frac{1}{27}w$    |
|             | 2. $Ship = Shinq$ 3. $\frac{1}{81}v = \frac{1}{27}w$  |
|             | 3. $2a^2b^2 - 3b^2c^2$ 6. $4y^2 - 10xy$               |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
| <del></del> |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |
|             |                                                       |

#### Example 2

Factorize the following

- 1. 3x(4x + 2) 7(4x + 2)
- 2. 2x(x-1) + 5(x-1)

#### Solution...

- 1. 3x(4x + 2) 7(4x + 2) = (4x + 2)(3x 7)
- 2. 2x(x-1) + 5(x-1) = (x-1)(2x+5)

NOTE:

$$b - a = -1(a - b)$$

#### Exercise 30 Date:.....

Factorize the following

- 1. x(x+1) 2(x+1)
- 2. 3x(1-x) + 2(1-x)
- 3. (m+n)(2x-y) x(m+n)
- 4. m(2a-b)-2n(b-2a)
- 5. x(a-c) + y(c-a)
- 6.  $(m-n)(3m+2n)-(m-n)^2$

| <br> | <br> | <br> |      |
|------|------|------|------|
|      |      |      |      |
| <br> | <br> | <br> |      |
|      |      |      |      |
|      |      |      |      |
| <br> | <br> | <br> |      |
|      |      |      |      |
| <br> | <br> | <br> |      |
| <br> | <br> | <br> |      |
|      |      |      |      |
| <br> | <br> | <br> |      |
|      |      |      |      |
|      | <br> | <br> |      |
| <br> | <br> | <br> |      |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      |      |      |      |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
| <br> | <br> | <br> |      |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      |      |      |      |

#### Example 3

Factorize completely

- 1. ax + ay + bx + by
- 2. am bm an + bn
- 3.  $m^2 + nt mt mn$
- 4.  $t^3 + t^2 + t + 1$

#### Solution...

1. 
$$ax + ay + bx + by = a(x + y) + b(x + y)$$
  
=  $(x + y)(a + b)$ 

2. 
$$am - bm - an + bn = m(a - b) - n(a - b)$$
  
=  $(a - b)(m - n)$ 

3. 
$$m^2 + nt - mt - mn = m^2 - mn - mt + nt$$
  
=  $m(m-n) - t(m-n)$ 

$$= (m-n)(m-t)$$

4. 
$$t^3 + t^2 + t + 1 = t^2(t+1) + 1(t+1)$$
  
=  $(t+1)(t^2+1)$ 

| Exercise 31 Date:                  |                                    |
|------------------------------------|------------------------------------|
| Factorize the following completely |                                    |
| 1. $2x + 2y + 3x + 3y$             |                                    |
| 2. $pm - qm - pn + qn$             |                                    |
| 3.  2kp - km + 6p - 3m             |                                    |
| 4.  px - 2qx - 4qy + 2py           |                                    |
| $5. bx - ax + x^2 - ab$            |                                    |
| 6. $2xy - 6pq - 3py + 4qx$         |                                    |
| 0.  2xy - 0pq - 3py + 4qx          |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    | Exercise 32 Date:                  |
|                                    | Factorize the following completely |
|                                    | 1. $xy - 18 + 3y - 6x$             |
|                                    | 2.  ac - bc - ad + bd              |
|                                    | 3.  pr + 3ps + 2qr + 6qs           |
| <del></del>                        | 3. $pr + 3ps + 2qr + 6qs$          |
|                                    | 4. $4xy + 8y^2 - 8xd - 16yd$       |
|                                    | 5.  2xy - 6mn - 3my + 4nx          |
|                                    | 6.  xy + xw + 2ay + 2aw            |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
| <del></del>                        |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |

|               | Exercise 33 Date:                                    |
|---------------|------------------------------------------------------|
|               | Factorize the following completely                   |
|               | 1 actorize the following completely                  |
|               | 1.  6pq - 3rs + 3qs - 6pr                            |
|               | 2. $tr - ps - pt + rs$                               |
|               | 3.  x + y - ax - ay                                  |
|               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|               | 4. $x(x-2) - 3xy + 6y$                               |
|               | 5. $x^2 - 2x - 3xy + 6y$                             |
|               | 6. $am + bn - an - bm$                               |
|               |                                                      |
|               | 7. $6ax - 12by - 9ay + 8bx$                          |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
| <del></del> _ |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |
|               |                                                      |

| l     |
|-------|
| <br>l |
| l     |
| <br>l |
| l     |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
| <br>l |
| 1     |
|       |
|       |
|       |
| <br>1 |
| l     |
| <br>l |
| l     |
|       |
|       |
|       |
| 1     |
| <br>l |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

#### FACTORIZATION OF QUADRATIC EXPRESSION

A quadratic expression in one variable is of the form  $ax^2 + bx + c$ , where a, b and c are constant and  $a \ne 0$ . a is the coefficient of  $x^2$ , b is the coefficient of x.

#### Case 1

When the coefficient of  $x^2$  is 1, i.e. a = 1, then the quadratic expression becomes  $x^2 + bx + c$ .

To factorize  $x^2 + bx + c$ , find two integers p and q such that: the sum p + q = b and the product  $p \times q = c$ .

Hence 
$$x^2 + bx + c = x^2 + (p+q)x + pq$$
  
=  $x^2 + px + qx + pq$   
=  $x(x+p) + q(x+p)$   
=  $(x+p)(x+q)$ 

#### Example 4

Factorize

1. 
$$x^2 + 3x + 2$$

2. 
$$x^2 + x - 6$$

3. 
$$x^2 - 7x - 18$$

#### Solution...

1.  $x^2 + 3x + 2$ 

Two integers such that the sum is 3 and the product is 2 are 2 and 1.

$$\therefore x^{2} + 3x + 2 = x^{2} + (2+1)x + 2$$

$$= x^{2} + 2x + x + 2$$

$$= x(x+2) + 1(x+2)$$

$$= (x+1)(x+2)$$

2.  $x^2 + x - 6$ 

Two integers such that the sum is 1 and the product is -6 are 3 and -2.

$$x^{2} + x - 6 = x^{2} + (3 - 2)x - 6$$

$$= x^{2} + 3x - 2x - 6$$

$$= x(x + 3) - 2(x + 3)$$

$$= (x + 3)(x - 2)$$

3.  $x^2 - 7x - 18$ 

Two integers such that the sum is -7 and the product is -18 are 2 and -9 $\therefore x^2 - 7x - 18 = x^2 + (2-9)x - 18$ 

$$= x^{2} + 2x - 9x - 18$$

$$= x(x+2) - 9(x+2)$$

$$= (x+2)(x-9)$$

| -x + 2x - 9x - 10                                                              |  |
|--------------------------------------------------------------------------------|--|
| = x(x+2) - 9(x+2)                                                              |  |
| = (x+2)(x-9)                                                                   |  |
| -(x+2)(x-7)                                                                    |  |
| Exercise 34 Date:                                                              |  |
| Factorize completely                                                           |  |
| 1. $x^2 + 5x - 6$ 5. $a^2 - 2a - 24$                                           |  |
| 2. $x^2 + 7x + 12$ 6. $x^2 + 3x - 154$                                         |  |
| 3. $x^2 - x - 6$ 7. $x^2 - 2x - 35$<br>4. $x^2 - 12x - 45$ 8. $x^2 - 12x + 36$ |  |
| 4. $\chi = 12\chi = 45$ 0. $\chi = 12\chi + 50$                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
| <del></del>                                                                    |  |
|                                                                                |  |
|                                                                                |  |
| ·                                                                              |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |
|                                                                                |  |

|             | Exercise 35         | Date:                  |
|-------------|---------------------|------------------------|
|             | Factorize the follo |                        |
| <del></del> | 1. $5x^2 + 13x - 6$ | $5  7.  3y^2 + 2y - 8$ |
|             | 2. $2t^2 - 3t - 2$  | 8. $2y^2 - 5y + 2$     |
|             | 3. $6x^2 + 11x + 4$ | $9.  35x^2 + 12x + 1$  |
|             | 4. $3a^2 - 11a + 6$ | 6 10. $6x^2 - 5x - 1$  |
|             | 5. $2x^2 - 21x + 4$ | 45 11. $12x^2 - x - 1$ |
|             | 6. $2x^2 + x - 15$  |                        |
|             |                     |                        |
|             |                     |                        |
|             |                     |                        |
|             |                     |                        |
|             |                     |                        |
|             |                     |                        |
|             |                     |                        |
|             |                     |                        |
|             |                     |                        |

#### Case 2

When  $a \ne 1$ , i.e. a is any integer than one then the quadratic expression becomes  $ax^2 + bx + c$ .

To factorize, find the two integers p and q such that their sum p + q = b and product  $p \times q = ac$ .

Hence; 
$$ax^2 + bx + c = ax^2 + (p+q)x + c$$
  
=  $ax^2 + px + qx + c$   
to be factorized.

#### Example 5

Factorize completely

(1) 
$$2x^2 + 5x + 3$$

(2) 
$$6m^2 + 7m - 3$$

#### Solution...

1.  $2x^2 + 5x + 3$ 

Two integers such that their sum is 5 and product 6 are 3 and 2

$$2x^{2} + 5x + 3 = 2x^{2} + (3+2)x + 3$$

$$= 2x^{2} + 3x + 2x + 3$$

$$= x(2x+3) + 1(2x+3)$$

$$= (2x+3)(x+1)$$

2.  $6m^2 + 7m - 3$ 

Two integers such that their sum is 7 and product -18 are 9 and -2.

$$6m^{2} + 7m - 3 = 6m^{2} + (9 - 2)m - 3$$

$$= 6m^{2} + 9m - 2m - 3$$

$$= 3m(2m + 3) - 1(2m + 3)$$

$$= (2m + 3)(3m - 1)$$

| <del></del> |                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------|
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             |                                                                                                         |
|             | Exercise 36 Date:  Factorize the following                                                              |
|             | Factorize the following 1. $35 - 2b - b^2$                                                              |
|             | Factorize the following  1. $35 - 2b - b^2$ 2. $9 + 35x - 4x^2$ 3. $7 - 6x - x^2$                       |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$                     |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$                     |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |
|             | Factorize the following  1. $35-2b-b^2$ 2. $9+35x-4x^2$ 3. $7-6x-x^2$ 4. $3-2x-x^2$ 5. $m^2n-2mn^2+n^3$ |

|             | Exercise 37 Date:                  |
|-------------|------------------------------------|
|             | Factorize the following completely |
|             | 1. $6x^2 + 5xy - 6y^2$             |
|             | $2.  2y^2 + xy - 3x^2$             |
|             | 3. $2s^2 - 3st - 2t^2$             |
|             | 4. $6x^2 + 7xy - 5y^2$             |
|             | 5. $10 - 3x - x^2$                 |
|             | 6. $5y^2 + 2ay - 3a^2$             |
| <del></del> | $7.  x^3 - 5x^2y + 6xy^2$          |
|             |                                    |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | ı |

| <br>       |
|------------|
|            |
| <br>······ |
|            |
| <br>·····  |
|            |
| <br>       |
|            |

#### **DIFFERENCE OF TWO SQUARES**

$$a^2 - b^2 = (a - b)(a + b)$$

Memorize this result.

#### Example 5

Factorize the following

1. 
$$m^2 - n^2$$

1. 
$$m^2 - n^2$$
 4.  $x^2 - \frac{1}{4}$ 

2. 
$$4t^2 - 1$$

5. 
$$x^3 - 5x$$

3. 
$$25x^2 - 4y^2$$

#### Solution...

1. 
$$m^2 - n^2 = (m - n)(m + n)$$

2. 
$$4t^2 - 1 = 2^2t^2 - 1^2$$
  
=  $(2t)^2 - 1^2$   
=  $(2t - 1)(2t + 1)$ 

**NB:** 
$$(ab)^n = a^n b^n$$
  
  $\therefore 4t^2 = 2^2 t^2 = (2t)^2$ 

3. Similarly, 
$$25x^2 - 4y^2 = 5^2x^2 - 2^2y^2$$
  
=  $(5x)^2 - (2y)^2$   
=  $(5x - 2y)(5x + 2y)$ 

4. 
$$x^2 - \frac{1}{4} = x^2 - \left(\frac{1}{2}\right)^2$$
  
=  $\left(x - \frac{1}{2}\right)\left(x + \frac{1}{2}\right)$ 

**NB:** 
$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$
  
i.e.  $\frac{1}{4} = \frac{1^2}{2^2} = \left(\frac{1}{2}\right)^2$ 

5. 
$$x^3 - 5x = x(x^2 - 5)$$
  
=  $x(x^2 - (\sqrt{5})^2)$   
=  $x(x - \sqrt{5})(x + \sqrt{5})$ 

| Exercise 38          | Date: |
|----------------------|-------|
| Eactorize completely |       |

$$2 \quad x^2 - 16$$

1. 
$$t^2 - 4$$
 4.  $y^2 - 1$  2.  $x^2 - 16$  5.  $k^2 - 121$ 

3. 
$$v^2 - 49$$

|      | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
| <br> | <br> |  |

|  | <br> | <br> |  |
|--|------|------|--|
|  |      |      |  |
|  |      |      |  |

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |

| Exercise 39 Date:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Factorize completely $\frac{1}{2} \frac{4x^2 - 1}{4x^2 - 4x^2}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. $4x^2 - 1$ 4. $x^2 - 4y^2$<br>2. $9m^2 - 1$ 5. $a^2 - 9b^2$  | Exercise 40 Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3. $9-4t^2$ 5. $u-9v$ 6. $4a^2-16$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. $9-4t^2$ 6. $4a^2-16$                                        | Factorize the following completely $\frac{1}{2} + \frac{2}{2} + \frac{2}{2} = \frac{2}{2} + \frac{2}{2} + \frac{2}{2} = \frac{2}{2} + \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} =$ |
|                                                                 | 1. $(x+3y)^2 - (2y+x)^2$<br>2. $(x-3y)^2 - (x+3y)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 | 2. $(x-3y)^2 - (x+3y)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | 3. $\left(2a + \frac{1}{3}\right)^2 - \left(2a - \frac{1}{3}\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                 | 4. $(2a+b)^2 - (b-2a)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | 4. $(2u + b)^2 - (b - 2u)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Exercise 41 Date:                                                                                   |  |
|-----------------------------------------------------------------------------------------------------|--|
| Exercise 41 Date:                                                                                   |  |
| Factorize the following expressions completely                                                      |  |
| Factorize the following expressions completely                                                      |  |
| Factorize the following expressions completely 1. $3x^3 - 12x$                                      |  |
| Factorize the following expressions completely<br>1. $3x^3 - 12x$<br>2. $8x^2 - 72y^2$              |  |
| Factorize the following expressions completely<br>1. $3x^3 - 12x$<br>2. $8x^2 - 72y^2$              |  |
| Factorize the following expressions completely 1. $3x^3 - 12x$ 2. $8x^2 - 72y^2$ 3. $32x^3 - 8xy^2$ |  |
| Factorize the following expressions completely 1. $3x^3 - 12x$ 2. $8x^2 - 72y^2$ 3. $32x^3 - 8xy^2$ |  |
| Factorize the following expressions completely 1. $3x^3 - 12x$ 2. $8x^2 - 72y^2$ 3. $32x^3 - 8xy^2$ |  |
| Factorize the following expressions completely<br>1. $3x^3 - 12x$<br>2. $8x^2 - 72y^2$              |  |

| <del></del>                                   |  |
|-----------------------------------------------|--|
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
| <del></del>                                   |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
| Exercise 42 Date:                             |  |
| Factorize the following expression completely |  |
| 1. $36p^2 - 49q^2$                            |  |
| 2. $9a^2t^2-1$                                |  |
| 3. $a^2 - (a - b)^2$                          |  |
| 4. $h^2 - k^2 - p(h - k)$                     |  |
| 5. $(x+6)^2 - 36x^2$<br>6. $9a^2 - 4(a-b)^2$  |  |
| 7. $4b^2 - ab + (a + 9b)^2 - a^2$             |  |
| 8. $m^2 - 2mn + n^2 - 9r^2$                   |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |

| Exercise 43 Date:                                             |  |
|---------------------------------------------------------------|--|
| 1. Without using mathematical tables or                       |  |
| calculator, evaluate the following                            |  |
| (i) $103^2 - 97^2$<br>(ii) $6.4^2 - 3.6^2$                    |  |
| (iii) 88.23 <sup>2</sup> – 11.77 <sup>2</sup>                 |  |
| (iv) $61.5^2 - 38.5^2$                                        |  |
| (v) $(73.8)^2 - (26.2)^2$                                     |  |
| (vi) $53.8^2 - 46.2^2$                                        |  |
| 2. Find R, if $5R^2 + (22.55)^2 = (27.45)^2$                  |  |
|                                                               |  |
| 3. Without using mathematical tables or                       |  |
| calculators, find the value of $y$ if $13y = 187^2 - 174^2$ . |  |
|                                                               |  |

| <br>Exercise 44 Date:                                             |
|-------------------------------------------------------------------|
| 1. If $(3.46)^2 - (1.54)^2 = 10x$ , find the value of             |
| <br>x.                                                            |
| <br>2. Without using calculator find O if                         |
| <br>2. Without using calculator, find $Q$ if $3Q + 13^2 = 16^2$ . |
| 3V + 13 = 10.                                                     |
| <br>3. If $y = m^2 - 4n^2$                                        |
| <br>a) (i) Factorize $m^2 - 4n^2$                                 |
| <br>(ii) Find the value of $y$ when $m = 4.4$                     |
| and $n=2.8$                                                       |
|                                                                   |
| <br>(iii) $m = 2x + 3$ and $n = x - 1$ , find y in                |
| <br>terms of $x$ , in its simplest form.                          |
| (i-) Malan with a subject of the formula                          |
| (iv) Make $n$ the subject of the formula $y = m^2 - 4n^2$ .       |
| <br>y = m - 4n.                                                   |
| <br>b) (i) $m^4 - 16n^4$ can be written as                        |
| $(m^2 - kn^2)(m^2 + kn^2)$ , write down                           |
| the value of $k$ .                                                |
|                                                                   |
| <br>(ii) Factorize completely $m^2n - 16n^5$ .                    |
|                                                                   |
| <br>                                                              |
|                                                                   |
| <br>                                                              |
|                                                                   |
| <br>                                                              |
|                                                                   |
|                                                                   |
|                                                                   |
| <br>                                                              |
|                                                                   |
|                                                                   |
|                                                                   |
| <br>                                                              |
|                                                                   |

| <del></del> |                                                                                      |
|-------------|--------------------------------------------------------------------------------------|
|             |                                                                                      |
|             |                                                                                      |
| <del></del> |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |
|             | FACTORIZATION AND SIMPLIFICATION                                                     |
|             | MOTE.                                                                                |
|             | NOTE:                                                                                |
|             | (i) $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$                                 |
|             | $\frac{1}{h} \times \frac{1}{d} = \frac{1}{hd}$                                      |
|             | b u bu                                                                               |
|             |                                                                                      |
|             | (ii) $a  c  a  d  ad$                                                                |
|             | (ii) $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$ |
|             | b a b c bc                                                                           |
|             |                                                                                      |
|             |                                                                                      |
|             | (iii) $b - a = -1(a - b)$                                                            |
|             |                                                                                      |

| Exercise 45 Date:                                                                                                      |             |  |
|------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Simplify the following.                                                                                                |             |  |
| (i) $\frac{3+x}{0-x^2}$ (vi) $\frac{(x-5)(x+4)}{x^2+x-30}$                                                             |             |  |
| $9-x^2$ $(v_1)$ $x^2+x-30$                                                                                             |             |  |
| (ii) $\frac{x^2-6x}{x^2-36}$ (vii) $\frac{x^2-7x-8}{x^2-64}$                                                           |             |  |
| x -30                                                                                                                  |             |  |
| (iii) $\frac{x^2-3x}{x^2-9}$ (viii) $\frac{x^2-16}{x^2-3x-4}$                                                          |             |  |
| (iii) $\frac{x^2-9}{x^2+x}$ (iv) $\frac{x^2-3x-4}{4(x-6)^2}$                                                           |             |  |
| (iv) $\frac{x^{-+x}}{3x+3}$ (ix) $\frac{4(x-6)^{-1}}{(x-6)}$                                                           |             |  |
| (IV) $\frac{3x+3}{3x+3}$ (IX) $\frac{(x-6)}{(x-6)}$<br>(V) $\frac{2x^2+5x-3}{2x^2-18}$ (X) $\frac{2x^2-18}{x^2+7x-30}$ |             |  |
| (V) ${2x^2-18}$ (X) ${x^2+7x-30}$                                                                                      |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        | <del></del> |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        | <del></del> |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        |             |  |
|                                                                                                                        | 1           |  |

|             | Exercise 46                                                       | Date:                                               |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------|
|             | Simplify the following                                            | ng                                                  |
|             | 7x+21                                                             | $4x^2 - 16x$                                        |
|             | (i) $\frac{7x+21}{2x^2+9x+9}$ (ii) $\frac{h^2-h-20}{h^2-h^2-h^2}$ | 22 102 30                                           |
|             | (ii) $\frac{h^2-h-20}{h^2-25}$                                    | (v) $\frac{x^2-x-20}{x^3-10x^2+25x}$                |
|             | n 25                                                              | 10x 125x                                            |
|             | (iii) $\frac{x^2+6x-7}{3x+21}$                                    | (vi) $\frac{42\pi p - 7\pi}{12pt - 2t + 18mp - 3m}$ |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
| <del></del> |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |
|             |                                                                   |                                                     |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exercise 47 Date:                                                                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Simplify the following.                                                                                                                                            |  |
| Simplify the following.  1. $\frac{1}{y-1} - \frac{1}{y}$                                                                                                          |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
| 2 2                                                                                                                                                                |  |
| 3. ${x-4} + {2x+5}$                                                                                                                                                |  |
| 4. $\frac{1-x}{x} - \frac{2+x}{x}$                                                                                                                                 |  |
| $\begin{array}{cccc} x & 1-2x \\ z & 1 \end{array}$                                                                                                                |  |
| 5. $\frac{2}{x-2} + \frac{5}{x+2}$                                                                                                                                 |  |
| 5. $\frac{\frac{2}{x-2} + \frac{3}{x+2}}{6. \frac{4}{x+3} + \frac{2x-1}{3}}$                                                                                       |  |
| $7  2x = \frac{10x}{10x}$                                                                                                                                          |  |
| 5-x                                                                                                                                                                |  |
| 6. $\frac{4}{x+3} + \frac{2x-1}{3}$ 7. $2x - \frac{10x}{5-x}$ 8. $\frac{5}{x-3} + \frac{3}{x+7} + \frac{1}{2}$ 9. $\frac{3x}{x+2} - \frac{5x}{3x-1} + \frac{1}{3}$ |  |
| $9 \frac{3x}{3x} - \frac{5x}{5x} + \frac{1}{4}$                                                                                                                    |  |
| x+2 $3x-1$ 3                                                                                                                                                       |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |
|                                                                                                                                                                    |  |

| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Exercise 48 Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Simplify the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2. $\frac{1}{2} + \frac{1}{2} - \frac{c - d}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $c \cdot d  cd$ $6ab+3a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 3. $\frac{1}{21a^2-9ab^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 4. $\frac{1}{x + 5} - \frac{2(x+2)}{x^2 - 35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $5  x^{2} - y^{2} \cdot (x - y)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 3. $\frac{(x+y)^2}{(3x+3y)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 6. $\frac{1}{x+1} - \frac{2}{x-1} + \frac{3}{x^2-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7. $\frac{2x}{(x-x)^2} = \frac{5}{x-x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| $(x-3)^2  x-3$ $1-\frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 8. $\frac{-x^2}{x+\frac{2}{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1. $\frac{3(x-y)}{3(x-y)} \frac{4(x-y)}{4(x-y)}$ 2. $\frac{1}{c} + \frac{1}{d} - \frac{c-d}{cd}$ 3. $\frac{6ab+3a^2}{21a^2-9ab^2}$ 4. $\frac{1}{x+5} - \frac{2(x+2)}{x^2-25}$ 5. $\frac{x^2-y^2}{(x+y)^2} \div \frac{(x-y)^2}{(3x+3y)}$ 6. $\frac{1}{x+1} - \frac{2}{x-1} + \frac{3}{x^2-1}$ 7. $\frac{2x}{(x-3)^2} - \frac{5}{x-3}$ 8. $\frac{1-\frac{4}{x^2}}{x+\frac{2}{x}}$ 9. $\frac{x^2-25}{x^2+5x} \div \frac{x^2-2x-15}{x^2-9}$ 10. $\frac{r^2+t^2}{2(r+t)^3} - \frac{r-rt}{2(r+t)^2}$ |  |
| 9. $\frac{1}{x^2+5x} \div \frac{1}{x^2-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $10. \frac{r^2 + t^2}{3(r+t)^3} - \frac{r-rt}{3(r+t)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $\angle(r+t)^{\omega}$ $\angle(r+t)^{\omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exercise 49 Date:                                                     |  |
|-----------------------------------------------------------------------|--|
| Simplify the following                                                |  |
| 1 $\frac{4x-4y}{a}$ 6 $\frac{4ab^2-2a^2b}{a}$                         |  |
| y-x up                                                                |  |
| 2. $\frac{xy^2 - xy}{1 - y}$ 7. $\frac{x^2 - 8x + 16}{x^2 - 7x + 12}$ |  |
| $x^{-7x+12}$                                                          |  |
| $3x+3y$ $4-x^2$                                                       |  |
| 4. $\frac{m^2 - n^2}{n - m}$ 9. $\frac{3x^2 - 6x}{4 - x^2}$           |  |
| $a^2-4b^2$                                                            |  |
| 3. $\frac{1}{a^2+4ab+4b^2}$                                           |  |
| <del></del>                                                           |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
| _                                                                     |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |

| Exercise 50  Simplify the following  1. $\frac{54k^2-6}{3k+1}$ 2. $\frac{2x^2-5x-12}{4x^2-9}$ 3. $\left(\frac{x^2}{2}-x+\frac{1}{2}\right)\left(\frac{1}{x-1}\right)$ 4. $\frac{a^2b^4-b^2a^4}{ab(a+b)}$ 5. $\frac{\frac{1}{4}m^2-9n^2}{\frac{1}{4}(\frac{1}{2}m-3n)}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
| <br>                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
| <br>                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
| <br>                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
| <br>                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | ı |

|             | Exercise 51 Date:                                                               |
|-------------|---------------------------------------------------------------------------------|
|             | 1. Divide $\frac{x^2-4}{x^2+x}$ by $\frac{x^2-4x+4}{x+1}$                       |
|             |                                                                                 |
|             | 2. Simplify $\frac{x^2+x-6}{x^2-3x+2} \times \frac{x^2-x}{x^2-9}$               |
| <del></del> |                                                                                 |
|             | 3. If $k = \frac{m-1}{m+1}$ , find the value of $\frac{k-1}{k} + \frac{2}{m-1}$ |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |

| <del></del> |                                                                             |          |
|-------------|-----------------------------------------------------------------------------|----------|
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
| <del></del> |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
|             |                                                                             |          |
| <del></del> |                                                                             |          |
|             |                                                                             | <b>.</b> |
|             | Exercise 52                                                                 | Date:    |
|             | $(p-r)^2-r^2$                                                               |          |
|             | Simplify $1. \frac{(p-r)^2 - r^2}{2p^2 - 4pr}$                              |          |
|             | $\frac{1}{2}c^2-\frac{2}{2}cd$                                              |          |
| <del></del> | $2.  \frac{\frac{1}{3}c^2 - \frac{2}{3}cd}{\frac{1}{2}d^2 - \frac{1}{4}cd}$ |          |
|             |                                                                             |          |
|             | 1 -                                                                         |          |
|             | 3. $\frac{x+\frac{1}{x}+2}{x^2-1}$                                          |          |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| ·           |   |
|             |   |
|             |   |
|             |   |
|             | I |

| Exercise 53 Date:                                                       |  |
|-------------------------------------------------------------------------|--|
| 1. Simplify $\frac{2-18m^2}{1+3m}$                                      |  |
|                                                                         |  |
| 2. Given that $x = \frac{2m}{1-m^2}$ and $y = \frac{2m}{1+m}$ . Express |  |
| 2x - y in terms of $m$ in the simplest form.                            |  |
| 3. Simplify $\frac{4}{x^2-4} - \frac{1}{x^2-3x+2}$                      |  |
|                                                                         |  |
| 4. Simplify $\frac{4a^2}{a^2-b^2} - \frac{2a}{a+b} - \frac{2b}{a-b}$    |  |
|                                                                         |  |
| 5. Simplify $\frac{m+1}{m-1} - \frac{m-1}{m+1} + \frac{4}{m^2-1}$       |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |

| <del></del> |                                                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             | Exercise 54 Date:                                                                                                                                                                                       |
|             | Simplify the following.                                                                                                                                                                                 |
|             | Simplify the following.  1. $\frac{1}{x^{2-5x+6}} - \frac{2}{x^{2-2x}} + \frac{2}{x^{2-2x}} + \frac{3}{x^{2-3x}}$ 2. $\frac{3a}{x^{2}+ax-2a^{2}} - \frac{a}{x^{2}+3ax+2a^{2}} + \frac{2x}{x^{2}-a^{2}}$ |
| <del></del> | 2. $\frac{3a}{3} = \frac{a}{3} + \frac{2x}{3}$                                                                                                                                                          |
|             | $x^2+ax-2a^2$ $x^2+3ax+2a^2$ $x^2-a^2$                                                                                                                                                                  |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                         |

| <br> |
|------|
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |

| <br>Zeros and Undefined Algebraic Fractions                                         |
|-------------------------------------------------------------------------------------|
| <br>The algebraic fraction $\frac{f(x)}{g(x)}$ is said to be                        |
| undefined or not exist if $g(x) = 0$ and it is                                      |
| <br>said to be zero if $f(x) = 0$ .                                                 |
|                                                                                     |
| <br>Example 6                                                                       |
| For what value of x is $\frac{1-3x}{x^2+4x+6}$ equal to zero?                       |
|                                                                                     |
| <br>Solution For zeros;                                                             |
| <br>1 - 3x = 0                                                                      |
| 1 = 3x                                                                              |
| <br>$x = \frac{1}{3}$                                                               |
| <br>3                                                                               |
| <br><b>Example 7</b> Find the values of <i>x</i> for which the expression           |
|                                                                                     |
| <br>$\frac{3-x-2x^2}{x^2(x+2)}$ is zero?                                            |
|                                                                                     |
| <br>Solution                                                                        |
| For zeros;                                                                          |
| <br>$3 - x - 2x^2 = 0$<br>$2x^2 + x - 3 = 0$                                        |
| <br>$2x^{2} + x - 3 = 0$ $2x^{2} + 3x - 2x - 3 = 0$                                 |
| <br>x(2x+3) - 1(2x+3) = 0                                                           |
| (2x+3)(x-1) = 0                                                                     |
| <br>2x + 3 = 0 or $x - 1 = 0$                                                       |
| <br>2x = -3 or $x = 1$                                                              |
| <br>$x = -\frac{3}{2}$                                                              |
| $\therefore \text{ The expression is zero if } x = -\frac{3}{2} \text{ or } x = 1.$ |
| <br>$\frac{1}{2} \text{ or } x = 1.$                                                |
| <br>Example 8                                                                       |
| <br>Find the value of x for which $\frac{1}{2x-1}$ does not                         |
|                                                                                     |
| <br>exist.                                                                          |
| <br>Solution                                                                        |
| <br>The expression does not exist when the                                          |
| denominator is equal to zero.                                                       |
| 2x - 1 = 0                                                                          |
| <br>2x = 1                                                                          |
| <br>$x = \frac{1}{2}$                                                               |
| $\therefore$ The expression does not exist if $x = \frac{1}{2}$ .                   |
| <br>2                                                                               |
| <br>Example 9                                                                       |
| <br>Find the values of $x$ for which the function                                   |
| $f: x \longrightarrow \frac{x+2}{6x^2-5x-1}$ is undefined.                          |
| <br>6x5x-1                                                                          |
| 1                                                                                   |

| Solution                                                                                             |   |
|------------------------------------------------------------------------------------------------------|---|
| f(x) is undefined if the denominator is equal                                                        |   |
| to zero.                                                                                             |   |
|                                                                                                      |   |
| $6x^2 - 5x - 1 = 0$                                                                                  |   |
| $6x^2 - 6x + x - 1 = 0$                                                                              |   |
| 6x + x + 1 = 0 $6x(x - 1) + 1(x - 1) = 0$                                                            |   |
| (x-1)(6x+1) = 0                                                                                      |   |
| (x-1)(6x+1) = 0<br>x-1=0 or $6x+1=0$                                                                 |   |
| $ \begin{array}{ccc} x - 1 = 0 & \text{of} & 6x + 1 = 0 \\ x = 1 & \text{or} & 6x = -1 \end{array} $ |   |
|                                                                                                      |   |
| $x = -\frac{1}{6}$                                                                                   |   |
|                                                                                                      |   |
| The function is undefined if $x = 1$ or $-\frac{1}{6}$ .                                             |   |
| 6                                                                                                    |   |
| Exercise 55 Date:                                                                                    |   |
| What are the values of $x$ for which the                                                             |   |
| following are not defined?                                                                           |   |
| $2v_{-1}$ $v_{-4}$                                                                                   |   |
| $(1)$ $x-2$ $(1)$ $x^2-2x-3$                                                                         |   |
| (ii) $\frac{x}{3x-2}$ (vi) $\frac{3x-3}{\frac{1}{2}x(x+1)}$                                          |   |
| 2 ` '                                                                                                |   |
| (iii) $\frac{x}{2x-1}$ (vii) $\frac{1+x}{4-x^2}$                                                     |   |
| $(ix)$ $x^2 - 7x + 8$ $(xiii)$ $5x + 3$                                                              |   |
| (iv) $\frac{x}{x^2+2x-8}$ (viii) $\frac{6x+5}{6x(x+1)}$                                              |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
| <del></del>                                                                                          |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      | 1 |

| Exercise 56 Date:                                                         |  |
|---------------------------------------------------------------------------|--|
| For what value(s) of $x$ is the following equal                           |  |
| to zero?                                                                  |  |
| 2 2 2                                                                     |  |
| (i) $\frac{x-3}{x^2+5x-6}$ (v) $\frac{2-x-x}{1+x}$                        |  |
| 7.64.2                                                                    |  |
| (ii) $\frac{2x}{1-x^2}$ (vi) $\frac{7-6x-x^2}{1-x}$                       |  |
| 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A                                   |  |
| (iii) $\frac{6x^2+x-12}{6x^2-17x+12}$ (vii) $\frac{9+35x-4x^2}{x^2+2x+1}$ |  |
| (2a(12)(1a)                                                               |  |
| $(iv)  \frac{(2x+3)(1-x)}{x(x+1)}$                                        |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
| <del></del>                                                               |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
| <del></del>                                                               |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
| <del></del>                                                               |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |

| Exercise 57 Date:                                                                     |  |
|---------------------------------------------------------------------------------------|--|
| What are the values of $x$ for which the                                              |  |
|                                                                                       |  |
| following are undefined?                                                              |  |
| (i) $\frac{1+x}{9-x^2}$ (v) $\frac{5}{x^2+2x-8}$                                      |  |
| $9-x^2$ $x^2+2x-8$ $(2x+2)(1-x)$ 1 2 2x                                               |  |
| (ii) $\frac{(2x+3)(1-x)}{x(x+1)}$ (vi) $\frac{1}{2} - \frac{3}{x-2} + \frac{2x}{x+3}$ |  |
| (II) ${x(x+1)}$ (VI) ${2} - {x-2} + {x+3}$                                            |  |
| (iii) $\frac{1}{x} + \frac{1}{x-1}$ (iv) $\frac{2x}{x-1}$                             |  |
| $\begin{array}{ccc} x & x-1 \\ 2x & \end{array}$                                      |  |
| (iv) $\frac{2x}{2x^2-8}$                                                              |  |
| 211 0                                                                                 |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |
|                                                                                       |  |

| <br>                                                                                   |
|----------------------------------------------------------------------------------------|
| <br>                                                                                   |
| <br>                                                                                   |
| <br>                                                                                   |
|                                                                                        |
|                                                                                        |
| <br>                                                                                   |
| <br>                                                                                   |
| <br>                                                                                   |
|                                                                                        |
|                                                                                        |
| <br>                                                                                   |
| <br>                                                                                   |
| <br>                                                                                   |
| <br>                                                                                   |
|                                                                                        |
| <br>                                                                                   |
| <br>                                                                                   |
| <br>                                                                                   |
| <br><b>.</b>                                                                           |
| <br>Exercise 58 Date:                                                                  |
| a) Simplify                                                                            |
| <br>(i) $\frac{2x+1}{2} - \frac{3x-7}{9} - \frac{5}{18}$                               |
| <br>(ii) $\frac{2}{1-x^2} + \frac{9}{1+x}$ 18                                          |
| <br>$(11) 1-x^2 1+x$                                                                   |
| <br>b) If $\frac{p}{q} = \frac{r}{s}$ , then $\frac{p+q}{r+s}$ is equal to?            |
| <br>$q = s^{t}$ then $r+s$ is equal to:                                                |
| c) If $p = \frac{x+3}{2x-1}$ , express $\frac{2p+5}{3p+1}$ in terms of $x$             |
| <br>c) $\prod p = \frac{1}{2x-1}$ , express $\frac{3p+1}{2x-1}$ in terms of x          |
| <br>2. Simplify the following                                                          |
| <br>(i) $\frac{2}{3} - \frac{1}{3}$                                                    |
| <br>(i) $\frac{2}{x-1} - \frac{1}{2(x+1)}$<br>(ii) $\frac{x+2}{x^2-9} - \frac{3}{x-3}$ |
| <br>(II) $\frac{1}{x^2-9} - \frac{1}{x-3}$                                             |
| (iii) $\left(x - \frac{27}{x^2}\right) \div \left(x - \frac{9}{x}\right)$              |
| <br>(iv) $\frac{1}{11} - \frac{2}{11} + \frac{2}{11}$                                  |
| <br>(v) $6(x-y)^2 \div 4(y^3-x^3)$                                                     |
| <br>(vi) $\frac{\frac{2}{x+3} - \frac{3}{x-2}}{\frac{5}{4}}$                           |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                  |

#### 3. Factorize completely

(a) 
$$3x^2 + xy - 2y^2$$

(b) 
$$x^2 - 4y^2 - 2x - 4y$$

(c) 
$$(x^2 + 1)^2 - 4x^2$$

(d) 
$$p^2 - q^2 - p + q$$

(e) 
$$27 - 3v^2$$

(f) 
$$(x+5)^2 - (x-1)^2$$

(g) 
$$xy + 20 + 4y + 5x$$

(h) 
$$2x^2 - 21x + 10$$

(i) 
$$(2p+3q)^2-9q^2$$

(j) 
$$7x^2 + 33x - 10$$

(k) 
$$xy - ys - y^2 + xs$$

(l) 
$$p^2q^2 - 6pqr + 9r^2$$

(m) 
$$(x + y - 1)^2 - (x - y + 1)^2$$

(n) 
$$x^2 + x^2y + 3x - 10y + 3xy - 10$$

#### 4. Simplify

Simplify
(i) 
$$\frac{a+2b}{a-b} \times \frac{a^2-b^2}{(a+2b)^2}$$
(ii) 
$$\frac{2a}{a+b} \div \frac{a+b}{a+b}$$

(ii) 
$$\frac{2a}{(a-b)^2} \div \frac{a+b}{a-b}$$

(iii) 
$$\frac{49x^2 - 25y^2}{5xy} \div \frac{7x + 5y}{x^2y^2}$$
(iv) 
$$\frac{2u^2 - uv - v^2}{u^2 + 2uv + v^2} \times \frac{u^2 - v^2}{2u + v}$$

(iv) 
$$\frac{2u^2 - uv - v^2}{u^2 + 2uv + v^2} \times \frac{u^2 - v^2}{2u + v}$$

(V) 
$$u^2 + 2uv + v^2 = 2u + v$$
  
(V)  $\frac{5abc^2}{a(b+c)} \div \frac{10ac}{(a+c)(b+c)}$ 

(vi) 
$$\frac{2a^2+7ab+3b^2}{a^2+ba} \times \frac{a^3-b^2}{a+3b}$$

#### 5. Simplify

(i) 
$$\frac{4s+2t}{2s^2+3st+t^2} \div \frac{2s^2-st-t^2}{s+t}$$
  
(ii)  $\frac{3x+y}{2x+3} \times \frac{2x+3}{2x+3}$ 

(ii) 
$$\frac{2s^2 + 3st + t^2}{3x + y} \times \frac{s + t}{2x + 3y}$$
(iii) 
$$\frac{3xy}{2x^2 + 5xy + 3y^2} \times \frac{2x + 3y}{3x^2 + 4xy + y^2}$$
(iii) 
$$\frac{3xy}{2x^2 + 5xy + 3y^2} \times \frac{2x + 3y}{3x^2 + 4xy + y^2}$$

(iii) 
$$\frac{3xy}{2x^2+5xy+3y^2} \times \frac{2x+3y}{3x^2+4xy+y^2}$$

(iv) 
$$\frac{2x+6y}{x^2-y^2} \times \frac{x+y}{2x^2+8xy+6y^2}$$

#### 6. Simplify the following

(i) 
$$\frac{x+2y}{20} - \frac{3x-2y}{12} - (y-x)$$

(i) 
$$\frac{x+2y}{20} - \frac{3x-2y}{12} - (y-x)$$
  
(ii)  $\frac{1}{x-2} + \frac{2x-1}{2x^2-3x-2} - \frac{2}{2x+1}$ 

#### 7.

(a) Given that 
$$xy = a^2$$
, show that 
$$\frac{1}{a+x} + \frac{1}{a+y} = \frac{1}{a}$$

(b) Show that 
$$\left(\frac{1+x^2}{1-x^2}\right)^2 - \left(\frac{2x}{1-x^2}\right)^2$$
 has the same numerical value for all  $(x \neq \pm 1)$  and determine the value.

(c) Express 
$$\frac{2a}{x-a} + \frac{3a}{x+a} - \frac{6a^2}{a^2-x^2}$$
 as a single fraction in its lowest terms. What is the value of the above expression when  $x = 6a$ ?

(d) Prove that 
$$\frac{\left(x^{\frac{3}{2}} + x^{\frac{1}{2}}\right)\left(x^{\frac{1}{2}} - x^{-\frac{1}{2}}\right)}{\left(x^{\frac{3}{2}} - x^{\frac{1}{2}}\right)^2} = \frac{x+1}{x(x-1)}$$

#### 8. Simplify the following

(i) 
$$\frac{x-2}{x^2+5x+6} + \frac{x+2}{x^2+7x+12} + \frac{x+3}{x^2+6x+8}$$
(ii) 
$$\frac{2x}{x^2-y^2} - \frac{3x}{x^2-2xy+y^2}$$

(ii) 
$$\frac{2x}{x^2-y^2} - \frac{3x}{x^2-2xy+y^2}$$

(iii) 
$$\frac{a+b}{a-b} + \frac{a-b}{a+b} - \frac{2ab}{a^2-b^2}$$

(iii) 
$$\frac{a+b}{a-b} + \frac{a-b}{a+b} - \frac{2ab}{a^2-b^2}$$
(iv) 
$$\frac{3x}{x^2-y^2} - \frac{2x}{x^2-2xy+y^2} - \frac{4xy}{x^3-x^2y-xy^2+y^3}$$

(v) 
$$\frac{x^2+2x-3}{(x-7)^2} \div \frac{x^2+x-6}{x^2-5x-14}$$

(vi) 
$$\frac{x^3-8}{9-x^2} \times \frac{x^2+2x-3}{x^2+3x+4}$$

$$(x-7)^{2} \quad x^{2}-5x-14$$

$$(vi) \quad \frac{x^{3}-8}{9-x^{2}} \times \frac{x^{2}+2x-3}{x^{2}+2x+4}$$

$$(vii) \quad \frac{2x^{2}+5x+3}{5x^{2}-24x-5} \times \frac{3x^{2}-20x+12}{x^{2}+3x+2} \div \frac{6x^{2}+5x-6}{4x^{2}+9x+2}$$

$$(viii) \quad \frac{x^{2}-(2x-3z)^{2}}{(x-3z)^{2}-4y^{2}} \div$$

(viii) 
$$\frac{x^2-(2x-3z)^2}{(x-3z)^2-4y^2}$$
 :

$$\left[\frac{4x^2 - (3z - x)^2}{(2y - x)^2 - 9z^2} \times \frac{9z^2 - (x - 2y)^2}{(3z - 2y)^2 - x^2}\right]$$

$$\left[\frac{4x^2 - (3z - x)^2}{(2y - x)^2 - 9z^2} \times \frac{9z^2 - (x - 2y)^2}{(3z - 2y)^2 - x^2}\right]$$
(ix) 
$$\left[\frac{x^2 - 2x - 15}{4y^6 z^9} \div \frac{9 - 4x^2}{36y^7 z^7}\right] \times \frac{4x^2 + 12x + 9}{48x^2 y^3 + 60y^3}$$

(x) 
$$\frac{\frac{x+2y}{x+1} \left[ 1 - \frac{2y}{2y-x} \right]}{1 - \frac{x+4y^2}{2y} + \frac{1}{2y}}$$

(xi) 
$$\left(\frac{x+8}{x-1} - x\right) \left(\frac{x}{7x-4} - \frac{1}{x+2}\right) \div \left(x-6 + \frac{4}{x-2}\right)$$

$$(xi) \quad \frac{1 - \frac{x + 4y^2}{x^2 - 1} + \frac{1}{x - 1}}{(xi) \quad \left(\frac{x + 8}{x - 1} - x\right) \left(\frac{x}{7x - 4} - \frac{1}{x + 2}\right) \div \left(x - 6 + \frac{4}{x - 2}\right)}{(xii) \quad \left(4y - \frac{x^2}{x - y}\right) \left(y - \frac{xy - x^2 - y^2}{x - 2y}\right) \div \left(2 - \frac{3x}{x + y}\right)}$$

(xiii) 
$$\frac{\frac{x+y}{x-y} - \frac{x-y}{x+y}}{\frac{x^2+y^2}{x^2-y^2} - \frac{x^2-y^2}{x^2+y^2}}$$

(xiv) 
$$\frac{x + \frac{1}{x}}{1 - \frac{1}{1 + \frac{1}{x}}}$$

(xv) 
$$\frac{\frac{x^2+y^2}{y}-1}{\frac{1}{x}-\frac{1}{y}} \div \frac{x^3+y^3}{x^2-y^2}$$

#### **SURDS**

We know that  $\sqrt{25} = 5$  and that  $\sqrt{\frac{1}{36}} = \frac{1}{6}$ .

These are examples of rational numbers. Rational numbers are numbers that can be expressed as a ratio of two integers, i.e.  $\frac{a}{b}$  where  $a,b\in\mathbb{Z}$  and  $b\neq 0$ . However,  $\sqrt{2}$  cannot be expressed as a ratio of two integers. It is for this reason that  $\sqrt{2}$  is an example of an irrational number.

Roots such as  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $\sqrt{5}$ ,  $\sqrt{7}$ , ... are called surds.

#### NOTE

Roots such as  $\sqrt{4}$ ,  $\sqrt{9}$ ,  $\sqrt{16}$  etc are called perfect since their result gives a rational number. The sign " $\sqrt{\phantom{a}}$ " means the positive square root.

[Although  $x^2 = 9 \implies x = 13$ , but  $\sqrt{9} = 3$ ]

 $\sqrt{3}$  means the positive square root of 3.

#### Rule 1

$$\sqrt{m} \times \sqrt{m} = \left(\sqrt{m}\right)^2 = m$$

i.e.  $\sqrt{2} \times \sqrt{2} = 2$ 

#### Rule 2

$$m\times \sqrt{n}=m\sqrt{n}$$

For example  $3 \times \sqrt{2} = 3\sqrt{2}$ 

#### Rule 3

$$\sqrt{m} \times \sqrt{n} = \sqrt{mn}$$

For example,  $\sqrt{3} \times \sqrt{2} = \sqrt{6}$ 

#### Rule 4

$$(m\sqrt{n})(p\sqrt{q}) = mp\sqrt{nq}$$

For example  $2\sqrt{2} \times 3\sqrt{5} = 6\sqrt{10}$ 

#### Rule 5

$$\frac{\sqrt{m}}{\sqrt{n}} = \sqrt{\frac{m}{n}}$$

For example,  $\frac{\sqrt{10}}{\sqrt{5}} = \sqrt{\frac{10}{5}} = \sqrt{2}$ .

#### Exercise 1

Date:....

Evaluate the following

- 1.  $\sqrt{5} \times \sqrt{5}$
- 2.  $5 \times \sqrt{7}$
- 3.  $\sqrt{3} \times \sqrt{11}$
- 4.  $(3\sqrt{5}) \times (2\sqrt{3})$
- 5.  $\frac{\sqrt{63}}{\sqrt{7}}$

| <br> | <br> |  |
|------|------|--|

| <b>REDUCIBLE SURDS</b> If $\sqrt{m}$ is such that $m$ can be expressed as a product of a perfect square and another integer, then $\sqrt{m}$ is said to be reducible surd.                                                                    | Exercise 3 Date: |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Example 1 Evaluate the following 1. $\sqrt{12}$ 2. $\sqrt{200}$ 3. $\sqrt{27}$                                                                                                                                                                |                  |
| Solution  1. $\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$ 2. $\sqrt{27} = \sqrt{9 \times 3} = \sqrt{9} \times \sqrt{3} = 3\sqrt{3}$ 3. $\sqrt{200} = \sqrt{100 \times 2} = \sqrt{100} \times \sqrt{2} = 10\sqrt{2}$ |                  |
| Exercise 2 Date:                                                                                                                                                                                                                              |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                                                                                               |                  |

#### **ADDITION & SUBTRACTION OF SURDS**

We can only add or subtract surds which are similar. Two surds are said to be similar if they have the same number under the root sign, example:

 $\sqrt{n}$ ,  $m\sqrt{n}$ ,  $p\sqrt{n}$  etc while surds like  $\sqrt{n}$ ,  $p\sqrt{m}$ ,  $q\sqrt{x}$  are not similar surds. We cannot add or subtract such surds.

i.e. 1. 
$$a\sqrt{m} + b\sqrt{m} = (a+b)\sqrt{m}$$

#### Example

(i) 
$$2\sqrt{3} + 5\sqrt{3} = (2+5)\sqrt{3} = 7\sqrt{3}$$

(ii) 
$$\sqrt{2} + 4\sqrt{2} = (1+4)\sqrt{2} = 5\sqrt{2}$$

$$2 \cdot a\sqrt{m} - b\sqrt{m}(a-b)\sqrt{m}$$

#### Example

(i) 
$$6\sqrt{7} - 2\sqrt{7} = (6-2)\sqrt{7} = 4\sqrt{7}$$

(ii) 
$$3\sqrt{3} - \sqrt{3} = (3-1)\sqrt{3} = 2\sqrt{3}$$

#### **WORTHY OF NOTE**

1. 
$$\sqrt{m} + \sqrt{n} \neq \sqrt{m+n}$$

$$2. \qquad \sqrt{m} - \sqrt{n} \neq \sqrt{m - n}$$

#### Exercise 4

Date:....

Evaluate the following

1. 
$$\sqrt{2} + 5\sqrt{2}$$

$$2 \sqrt{3} + \sqrt{3} + 4\sqrt{3} + 7\sqrt{3}$$

| 3. | $ 2\sqrt{7} + 3\sqrt{7} + 5\sqrt{7} - \sqrt{7}  \sqrt{3} - 4\sqrt{2} + 3\sqrt{3} + 5\sqrt{2} $ |
|----|------------------------------------------------------------------------------------------------|
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |

| <br> | <br> |
|------|------|

|      | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
| <br> |      |      |  |
|      |      |      |  |
|      | <br> | <br> |  |
| <br> |      |      |  |
|      |      |      |  |
|      |      |      |  |
| <br> |      |      |  |
| <br> |      |      |  |
| <br> |      |      |  |
|      |      |      |  |
|      | <br> | <br> |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |

#### Example 2

Evaluate the following

1. 
$$\sqrt{12} + 3\sqrt{75}$$

2. 
$$5\sqrt{6} - \sqrt{24} + \sqrt{294}$$

#### Solution...

1. 
$$\sqrt{12} + 3\sqrt{75}$$
  
 $= \sqrt{4 \times 3} + 3\sqrt{25 \times 3}$   
 $= \sqrt{4} \times \sqrt{3} + 3 \times \sqrt{25} \times \sqrt{3}$   
 $= 2\sqrt{3} + 3 \times 5 \times \sqrt{3}$   
 $= 2\sqrt{3} + 15\sqrt{3}$   
 $= 17\sqrt{3}$ 

2. 
$$5\sqrt{6} - \sqrt{24} + \sqrt{294}$$
  
 $= 5\sqrt{6} - \sqrt{4 \times 6} + \sqrt{49 \times 6}$   
 $= 5\sqrt{6} + \sqrt{4} \times \sqrt{6} + \sqrt{49} \times \sqrt{6}$   
 $= 5\sqrt{6} - 2\sqrt{6} + 7\sqrt{6}$   
 $= 10\sqrt{6}$ 

| Exercise 5 Date: | Exercise 6 Date: |
|------------------|------------------|
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |
|                  |                  |

| Exercise 7 Date:                                         |                                                                         |
|----------------------------------------------------------|-------------------------------------------------------------------------|
| Simplify the following                                   |                                                                         |
| 1. $3\sqrt{45} - 12\sqrt{5} + 16\sqrt{20}$               |                                                                         |
| 2. $3\sqrt{75} - \sqrt{12} + \sqrt{108}$                 |                                                                         |
| 3. $\sqrt{147} - \sqrt{75} + \sqrt{27}$                  |                                                                         |
| 4. $\sqrt{72} - \sqrt{50} + \sqrt{75}$                   |                                                                         |
|                                                          |                                                                         |
| 5. $3\sqrt{48} + 2\sqrt{12} - \sqrt{75}$                 |                                                                         |
| 6. $\sqrt{8} - 40\sqrt{2} + 4\sqrt{200}$                 |                                                                         |
| 7. $\frac{\sqrt{28}+\sqrt{343}}{3\sqrt{52}}+\frac{5}{3}$ |                                                                         |
| $2\sqrt{63}$ 3                                           |                                                                         |
| <del></del>                                              |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
| <del></del>                                              |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
| <del></del>                                              |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
| <del></del>                                              |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          |                                                                         |
|                                                          | Examples 0 Date:                                                        |
| <del></del>                                              | Exercise 8 Date:                                                        |
|                                                          | Simplify the following.                                                 |
|                                                          | 1. $(\sqrt{3})^4$ 5. $\frac{(\sqrt{14})^3}{(\sqrt{2})^3}$               |
|                                                          | (\forall 2)                                                             |
|                                                          | 2. $(\sqrt{12})^3$ 6. $(2\sqrt{3})^3$                                   |
|                                                          | 3. $(\sqrt{6})^{\frac{5}{3}}$ 7. $(4\sqrt{2})^{3}$                      |
|                                                          | $\begin{pmatrix} \sqrt{15} \end{pmatrix}^3 \qquad \qquad \sqrt{35}$     |
|                                                          | 4. $\frac{(\sqrt{15})^3}{\sqrt{3}}$ 8. $\frac{\sqrt{35}}{(\sqrt{7})^3}$ |
|                                                          | (v')                                                                    |
|                                                          |                                                                         |

Note  $\sqrt{n} = m \Longrightarrow \left(\sqrt{n}\right)^2 = m^2$  $n = m^2$ Exercise 9 Date:.... Find *p* in the following. 1.  $p\sqrt{28} + \sqrt{63} - \sqrt{7} = 0$ 2.  $\sqrt{128} + \sqrt{18} - \sqrt{p} = 7\sqrt{2}$ 3.  $\sqrt{3p} + \sqrt{18} - \sqrt{98} = \sqrt{50}$ 4.  $\sqrt{150} - \sqrt{12p} + \sqrt{54} = 0$ 5.  $\sqrt{75} - \sqrt{27} + \sqrt{48} = p\sqrt{3}$ 

#### **MULTIPLICATION OF SURDS** The usual method of multiplying and expanding applies as when: (i) a(m+n) = am + an(ii) (a+b)(c+d) = a(c+d) + b(c+d)= ac + ad + bc + bdNote: The rules of surds are used. Example 3 Expand and simplify the following. 1. $2\sqrt{3}(\sqrt{3}-5\sqrt{2})$ 2. $(\sqrt{2} + 3\sqrt{5})(2\sqrt{2} - \sqrt{5})$ 3. $(5\sqrt{2}-\sqrt{3})^2$ Solution... 1. $2\sqrt{3}(\sqrt{3}-5\sqrt{2})$ $=2\sqrt{3}\times\sqrt{3}-2\sqrt{3}\times5\sqrt{2}$ $= 2(3) - 10\sqrt{6}$ $=6-10\sqrt{6}$ 2. $(\sqrt{2} + 3\sqrt{5})(2\sqrt{2} - \sqrt{5})$ $=\sqrt{2}(2\sqrt{2}-\sqrt{5})+3\sqrt{5}(2\sqrt{2}-\sqrt{5})$ $= 2(2) - \sqrt{10} + 6\sqrt{10} - 3(5)$ $= 4 - 15 - \sqrt{10} + 6\sqrt{10}$ $=-11+5\sqrt{10}$ 3. $(5\sqrt{2} - \sqrt{3})^2$ $=(5\sqrt{2}-\sqrt{3})(5\sqrt{2}-\sqrt{3})$ $=5\sqrt{2}(5\sqrt{2}-\sqrt{3})-\sqrt{3}(5\sqrt{2}-\sqrt{3})$ $= 25(2) - 5\sqrt{6} - 5\sqrt{6} + 3$ $=50+3-10\sqrt{6}$ $= 53 - 10\sqrt{6}$ Exercise 10 Date:.... Expand and simplify the following 1. $\sqrt{2}(\sqrt{6}-\sqrt{2})$ 2. $\sqrt{3}(\sqrt{6} + \sqrt{3})$ 3. $\sqrt{2}(\sqrt{10}-3\sqrt{6}-\sqrt{8})$ 4. $2\sqrt{5}(3\sqrt{5}-2\sqrt{2})$ 5. $3\sqrt{2}(2\sqrt{8}-\sqrt{18})$ 6. $3\sqrt{15}(2\sqrt{3}+\sqrt{5})$

| Exercise 11 Date:                                     |                                                                                                                    |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Expand and simplify the following.                    |                                                                                                                    |
| 1. $\sqrt{3}(\sqrt{3}-\sqrt{2})+2(\sqrt{3}-\sqrt{2})$ |                                                                                                                    |
|                                                       |                                                                                                                    |
| 2. $2\sqrt{5}(1+3\sqrt{5})-3(1+3\sqrt{5})$            |                                                                                                                    |
| 3. $(\sqrt{2}+1)(\sqrt{2}-1)$                         |                                                                                                                    |
| 4. $(4\sqrt{3} + 2\sqrt{5})(4\sqrt{3} - 2\sqrt{5})$   |                                                                                                                    |
|                                                       |                                                                                                                    |
| 5. $(3\sqrt{2} + \sqrt{5})(3\sqrt{2} - \sqrt{5})$     |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
| <del></del>                                           |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       | Exercise 12 Date:                                                                                                  |
|                                                       | Evaluate the following                                                                                             |
|                                                       | 1. $(\sqrt{3} + \sqrt{2})^2$ 4. $(\sqrt{3} + 2\sqrt{2})^2$<br>2. $(1 - \sqrt{2})^2$ 5. $(\sqrt{5} - 2\sqrt{10})^2$ |
|                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                               |
|                                                       | 2. $(1-\sqrt{2})$ 5. $(\sqrt{5}-2\sqrt{10})$                                                                       |
|                                                       | 3. $(\sqrt{2}+1)^2$                                                                                                |
|                                                       | J. (VZ   1)                                                                                                        |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
| <del></del>                                           |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |
|                                                       |                                                                                                                    |

# **SOLVING MATHEMATICAL QUESTIONS.** Exercise 13 Date:.... Simplify the following leaving the answer in surd form. 1. $\sqrt{12}(\sqrt{48}-\sqrt{3})$ 2. $\sqrt{50} - 3\sqrt{2}(2\sqrt{2} - 5) - 5\sqrt{32}$ 3. $\sqrt{2}(\sqrt{6}+2\sqrt{2})-2\sqrt{3}$ 4. $3\sqrt{27} - 2\sqrt{3}(4\sqrt{3} - 5\sqrt{12})$ 5. $\sqrt{1500} + 3\sqrt{3} \times 5\sqrt{5} + 2\sqrt{15}(\sqrt{13} - 3)$

THE ONLY WAY OF LEARNING MATHEMATICS IS BY SOILING YOUR HANDS

| <br>Exercise 14 Date:                                                                                           |
|-----------------------------------------------------------------------------------------------------------------|
| Evaluate the following                                                                                          |
| <br>$1.  \sqrt{7} \left( 3\sqrt{7} + \frac{6}{\sqrt{7}} \right)$                                                |
| <br>$2.  4\sqrt{3}\left(\frac{3}{\sqrt{3}} + \sqrt{3}\right)$                                                   |
| <br>$3.  \left(1 - \sqrt{5}\right) \left(\frac{1}{5} + \sqrt{5}\right)$                                         |
| <br>4. $(3+3\sqrt{3})(2+4\sqrt{3})$                                                                             |
| <br>4. $(3 + 3\sqrt{3})(2 + 4\sqrt{3})$<br>5. $(\sqrt{5})^{-2} \times 75^{\frac{1}{2}} \times 12^{\frac{1}{2}}$ |
| <br>3. (V3) × 73 <sup>2</sup> × 12 <sup>2</sup>                                                                 |
| <br>                                                                                                            |
|                                                                                                                 |
| <br>                                                                                                            |
| <br>                                                                                                            |
| <br>                                                                                                            |
| <br>                                                                                                            |
|                                                                                                                 |
|                                                                                                                 |
| <br>                                                                                                            |
| <br>                                                                                                            |
| <br>                                                                                                            |
| <br>                                                                                                            |
|                                                                                                                 |
|                                                                                                                 |
| <br><del></del>                                                                                                 |
| <br>                                                                                                            |
| <br>                                                                                                            |
| <br>                                                                                                            |
| <br>                                                                                                            |
|                                                                                                                 |
|                                                                                                                 |
| <br>                                                                                                            |
| <br>                                                                                                            |
| <br>                                                                                                            |
| <br>                                                                                                            |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
| <br>                                                                                                            |
|                                                                                                                 |
| <br>                                                                                                            |

|             | Exercise 15 Date:                                                                                                               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|
|             | Simplify the following leaving your answer                                                                                      |
|             | in surd form where possible.                                                                                                    |
|             | 1. $\frac{3}{4}\sqrt{128} - \sqrt{50}$                                                                                          |
|             | $2.  \frac{1}{2}\sqrt{32} - 18 + \sqrt{2}$                                                                                      |
|             | (1/6)(2./2)                                                                                                                     |
| <del></del> | 3. $\frac{(\sqrt{6})(2\sqrt{2})^2}{(\sqrt{2})^2}$                                                                               |
|             | (V3)<br>4 (2.5 2.5) <sup>2</sup>                                                                                                |
|             | 4. $(3\sqrt{2} - 2\sqrt{3})$                                                                                                    |
|             | 3. $\frac{(\sqrt{6})(2\sqrt{2})}{(\sqrt{3})^{2}}$ 4. $(3\sqrt{2} - 2\sqrt{3})^{2}$ 5. $(1 - \sqrt{3})^{2} - (1 + \sqrt{3})^{2}$ |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
| <del></del> |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
| <del></del> |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
| <del></del> |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
| <del></del> |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
|             |                                                                                                                                 |
| <del></del> |                                                                                                                                 |
|             |                                                                                                                                 |

| <b>CONJUGATE SURDS</b> Two surds are said to be conjugate of each other if their product gives rise to a rational number. Given the surd $\sqrt{m} + \sqrt{n}$ , then $\sqrt{m} - \sqrt{n}$ is called its conjugate since their product give rise to a rational number.  i.e. $(\sqrt{m} + \sqrt{n})(\sqrt{m} - \sqrt{n}) = (\sqrt{m})^2 - (\sqrt{n})^2 = m - n$                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>Note that: $m^2 - n^2 = (m - n)(m + n)$                                                                                                                                                                                                                                                                                                                                                    |
| Example 4 Write down the conjugate of each of the following  (i) $\sqrt{a} - \sqrt{b}$ (ii) $-p - m\sqrt{n}$ (iii) $3 + 2\sqrt{2}$                                                                                                                                                                                                                                                             |
| Solution  (i) The conjugate of $\sqrt{a} - \sqrt{b}$ is $\sqrt{a} + \sqrt{b}$ .  (ii) The conjugate of $-p - m\sqrt{n}$ is $-p + m\sqrt{n}$ .  (iii) The conjugate of $3 + 2\sqrt{2}$ is $3 - 2\sqrt{2}$ .                                                                                                                                                                                     |
| RATIONALIZATION OF THE DENOMINATOR It is the process of making the denominator of fractional surds rational numbers.                                                                                                                                                                                                                                                                           |
| <b>Type 1</b> $\frac{1}{\sqrt{a}}$ can be rationalized by multiplying the numerator and the denominator by the denominator. i.e. $\frac{1}{\sqrt{a}} = \frac{1}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} = \frac{\sqrt{a}}{a}$ .                                                                                                                                                             |
| Type 2 Fractions with denominators as $a\sqrt{m} \pm b\sqrt{n}$ , we rationalize by multiplying both the numerator and the denominator by the conjugate of the denominator given  (i) $\frac{1}{\sqrt{a}+\sqrt{b}} = \frac{1}{\sqrt{a}+\sqrt{b}} \times \frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}$ $= \frac{\sqrt{a}-\sqrt{b}}{(\sqrt{a})^2-(\sqrt{b})^2}$ $= \frac{\sqrt{a}-\sqrt{b}}{a-b}$ |
| (ii) $\frac{1}{\sqrt{a}-\sqrt{b}} = \frac{1}{\sqrt{a}-\sqrt{b}} \times \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}$ $= \frac{\sqrt{a}+\sqrt{b}}{(\sqrt{a})^2-(\sqrt{b})^2}$ $= \frac{\sqrt{a}+\sqrt{b}}{a-b}$                                                                                                                                                                                  |

| Exercise 16                                               | Date:                                        |                                                                                                                                                                     |
|-----------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluate the following                                    | g                                            |                                                                                                                                                                     |
|                                                           | $\sqrt{2}+\sqrt{3}$                          |                                                                                                                                                                     |
| 1. $\frac{1}{\sqrt{7}}$                                   | 4. $\frac{\sqrt{2}+\sqrt{3}}{\sqrt{3}}$      |                                                                                                                                                                     |
| 2. $\frac{10}{\sqrt{32}}$ 3. $\frac{7\sqrt{5}}{\sqrt{7}}$ | 5. $\frac{3\sqrt{50}}{5\sqrt{27}}$           |                                                                                                                                                                     |
| $\frac{2}{\sqrt{32}}$                                     | 3. $\frac{1}{5\sqrt{27}}$                    |                                                                                                                                                                     |
| $3 \frac{7\sqrt{5}}{1}$                                   | 6. $\frac{3}{\sqrt{2}} - \frac{1}{\sqrt{2}}$ |                                                                                                                                                                     |
| $\sqrt{7}$                                                | $\sqrt{2}$ $\sqrt{2}$                        |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
|                                                           |                                              | Exercise 17 Date:                                                                                                                                                   |
|                                                           |                                              | Evaluate the following                                                                                                                                              |
| <br>                                                      |                                              | $\frac{1}{1}$ $\frac{1}{1}$ $\frac{\sqrt{72}}{1}$                                                                                                                   |
|                                                           |                                              | 1. $\frac{1}{\sqrt{3}-\sqrt{2}}$ 5. $\frac{\sqrt{72}}{\sqrt{48}-\sqrt{3}}$ 2. $\frac{1}{\sqrt{3}+\sqrt{5}}$ 6. $\frac{\sqrt{8}+5\sqrt{32}-4\sqrt{50}}{1+\sqrt{18}}$ |
|                                                           | <del></del>                                  | 2. $\frac{1}{\sqrt{3}+\sqrt{5}}$ 6. $\frac{\sqrt{8}+5\sqrt{32}-4\sqrt{50}}{1+\sqrt{18}}$                                                                            |
|                                                           |                                              | $\sqrt{3}+\sqrt{5}$ 0. $1+\sqrt{18}$                                                                                                                                |
|                                                           |                                              | 3. $\frac{2}{5-\sqrt{7}}$ 7. $\frac{3\sqrt{5}-4\sqrt{5}}{3\sqrt{5}+4\sqrt{5}}$                                                                                      |
| <br>                                                      |                                              | $5 - \sqrt{7} \qquad 3\sqrt{5} + 4\sqrt{5}$                                                                                                                         |
|                                                           |                                              | 4. $\frac{3+\sqrt{2}}{5+\sqrt{2}}$                                                                                                                                  |
|                                                           |                                              | 31 12                                                                                                                                                               |
| <br>                                                      |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
| <br>                                                      |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |
|                                                           |                                              |                                                                                                                                                                     |

| <del></del> |                                                                                                                                                                                  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                  |
|             |                                                                                                                                                                                  |
|             |                                                                                                                                                                                  |
|             |                                                                                                                                                                                  |
|             |                                                                                                                                                                                  |
|             |                                                                                                                                                                                  |
|             |                                                                                                                                                                                  |
|             | Exercise 18 Date:                                                                                                                                                                |
|             | Simplify the following leaving your answer                                                                                                                                       |
|             | in surd form $a + b\sqrt{c}$ .                                                                                                                                                   |
|             | 1. $\frac{5}{\sqrt{7}-\sqrt{3}} + \frac{1}{\sqrt{7}+\sqrt{3}}$                                                                                                                   |
|             | 2. $\frac{2+\sqrt{3}}{\sqrt{3}} - \frac{\sqrt{2}-2}{\sqrt{2}}$ 3. $\frac{2}{3+2\sqrt{2}} + \frac{1}{3-2\sqrt{2}}$ 4. $\frac{5}{\sqrt{7}-\sqrt{3}} + \frac{1}{\sqrt{7}+\sqrt{3}}$ |
|             | $\begin{pmatrix} \sqrt{3} & \sqrt{2} \\ 2 & 2 & 1 \end{pmatrix}$                                                                                                                 |
|             | 3. $\frac{1}{3+2\sqrt{2}} + \frac{1}{3-2\sqrt{2}}$                                                                                                                               |
|             | 4. $\frac{3}{\sqrt{7}-\sqrt{3}}+\frac{1}{\sqrt{7}+\sqrt{3}}$                                                                                                                     |
|             | $5.  \frac{\sqrt{3}}{\sqrt{3}-1} + \frac{\sqrt{3}}{\sqrt{3}+1}$                                                                                                                  |
|             | √3−1 · √3+1                                                                                                                                                                      |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

|             | Exercise 19 Date:                                    |
|-------------|------------------------------------------------------|
|             | Without using table or calculator evaluate           |
|             | (i) $3\sqrt{7}(7-2\sqrt{7})$ if $\sqrt{7} = 2.646$   |
|             | (ii) $2\sqrt{5}(6-2\sqrt{5})$ if $\sqrt{5} = 2.236$  |
|             | (iii) $\sqrt{0.0007}$ if $\sqrt{7} = 2.646$          |
|             | (iv) $2\sqrt{3}(2-\sqrt{3}) + 3\sqrt{2}(\sqrt{2}-1)$ |
|             | if $\sqrt{2} = 1.414$ and $\sqrt{3} = 1.732$ .       |
|             | 11  VZ = 1.414  and VS = 1.732.                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
| ·           |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
| <del></del> |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
| <del></del> |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |

|               | Exercise 20                                                                                                                                                      | Date: |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|               | Solve the following.                                                                                                                                             |       |
|               | 1. $\frac{\sqrt{2}}{k+\sqrt{2}} = \frac{1}{k-\sqrt{2}}$                                                                                                          |       |
| <del></del>   | $k+\sqrt{2}$ $k-\sqrt{2}$<br>$2+\sqrt{3}$ $-4$                                                                                                                   |       |
|               | 2. $\frac{2+\sqrt{3}}{1-\sqrt{x}} = \frac{4}{2-\sqrt{3}}$                                                                                                        |       |
|               | $\frac{5}{5} = \frac{\sqrt{8}}{8} = \frac{\sqrt{2}}{2}$                                                                                                          |       |
|               | 2. $\frac{2+\sqrt{3}}{1-\sqrt{x}} = \frac{x-\sqrt{2}}{2-\sqrt{3}}$ 3. $\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = x\sqrt{2}$ 4. $\frac{6}{5-\sqrt{x}} = \sqrt{x}$ |       |
|               | 4. $\frac{6}{5-\sqrt{x}} = \sqrt{x}$                                                                                                                             |       |
|               | 3- 72                                                                                                                                                            |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
| <del></del>   |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |
| - <del></del> |                                                                                                                                                                  |       |
|               |                                                                                                                                                                  |       |

| ·           |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| EQUALITY OF SURDS                                        | Exercise 22 Date:                                                  |
|----------------------------------------------------------|--------------------------------------------------------------------|
| Given two surds $a + m\sqrt{b}$ and $c + n\sqrt{d}$ then | If $2\sqrt{5} + \sqrt{125} - \sqrt{45} = a + b\sqrt{5}$ , evaluate |
| we can say that $a + m\sqrt{b} = c + n\sqrt{d}$ if and   | 2a-b.                                                              |
| only if $a = c$ , $m = n$ and $b = d$ .                  |                                                                    |
| •                                                        |                                                                    |
|                                                          |                                                                    |
| Exercise 21 Date:                                        |                                                                    |
| Find a such that                                         |                                                                    |
| $(3+4\sqrt{3})(2-a\sqrt{3}) = -18+2\sqrt{3}.$            |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
| <del></del>                                              |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |
|                                                          |                                                                    |

| Exercise 23             | Date: $\overline{3} - 5\sqrt{2}(\sqrt{3} + \sqrt{2}) = a + b\sqrt{6}.$ |
|-------------------------|------------------------------------------------------------------------|
| Given that $(\sqrt{3})$ | $(3-5\sqrt{2})(\sqrt{3}+\sqrt{2})=a+b\sqrt{6}.$                        |
| Find $a$ and $b$ .      |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |
|                         |                                                                        |

Exercise 24

1. If 
$$\frac{\sqrt{5}+4}{3-2\sqrt{5}} - \frac{2+\sqrt{5}}{4-2\sqrt{5}} = a + b\sqrt{5}$$
, find the values of  $a$  and  $b$ .

- 2. Given that  $k = \frac{1}{\sqrt{3}}$  and that  $p = \frac{1+k}{1-k'}$ express in its simplest form,
  - (i) *p*
- 3. Given that  $\sqrt{a + b\sqrt{3}} = \frac{13}{4+\sqrt{3}}$  where aand b are integers, find, without using a calculator, the value of a and of b.
- 4. A cuboid has a square base of side  $(2-\sqrt{3})$ m and a volume of  $(2\sqrt{3}-3)$ m<sup>3</sup>. Find the height of the cuboid in the form  $(a + b\sqrt{3})$ m, where a and b are integers.
- 5. Express  $(2-\sqrt{5})^2 \frac{8}{3-\sqrt{5}}$  in the form  $p + q\sqrt{5}$ , where p and q are integers.
- (a) Given that  $p = \frac{\sqrt{3}+1}{\sqrt{3}-1}$ , express in its simplest surd form,

  - (i) p (ii)  $p \frac{1}{n}$
- (b) Show that  $\frac{\left(4-\sqrt{x}\right)^2}{\sqrt{x}}$  can be written in the form  $px^{-\frac{1}{2}} + q + rx^{\frac{1}{2}}$ , where p, qand r are integers to be found.
- 7. Simplify the following leaving your answer in surd form where possible.
  - (i)  $\sqrt{50} \sqrt{18}$
  - (ii)  $(7 + \sqrt{5})(3 \sqrt{5})$ (iii)  $\sqrt{75} \sqrt{27}$

  - (iv)  $(5-\sqrt{8})(1+\sqrt{2})$
- 8. Evaluate the following your answer in surd where possible.

(v) 
$$\frac{\sqrt{50} + \sqrt{8}}{7\sqrt{2}}$$

(x) 
$$\frac{12\sqrt{3}}{\sqrt{50}-\sqrt{18}}$$

9.

- (a) Solve the following
  - (i)  $\sqrt{x+3} = x-3$
  - (ii)  $(1-x)\sqrt{3} = 2(x+1)$
- (b) Find the integers *a* and *b* such that  $\frac{\sqrt{3}-2}{\sqrt{3}+2} = a\sqrt{3} + b.$
- (c) Simplify the following

10.

- (a) Find the prime numbers *p* and *q* such that  $\sqrt{56} = 2\sqrt{p}\sqrt{q}$  where p < q.
- (b) Simplify the following

(i) 
$$\sqrt{360} - \sqrt{2} \times (\sqrt{5})^2 - \frac{\sqrt{30} \times \sqrt{8}}{\sqrt{6}}$$
  
(ii)  $\frac{4\sqrt{2} - \sqrt{11}}{3\sqrt{2} + \sqrt{11}}$ 

(ii) 
$$\frac{4\sqrt{2}-\sqrt{11}}{3\sqrt{2}+\sqrt{11}}$$

(iii) 
$$\frac{7}{2\sqrt{14}} + \left(\frac{\sqrt{14}}{2}\right)^3$$

11.

- (a) Evaluate the following equations leaving your answer in surd where possible.

- (b) Evaluate the following and leave your answer in surd where possible.
  - $\frac{8-3\sqrt{6}}{2\sqrt{3}+3\sqrt{2}}$
  - (ii)  $\sqrt{24} \times \sqrt{27} + \frac{9\sqrt{30}}{\sqrt{16}}$
  - (iii)  $\frac{(2+\sqrt{5})^2}{\sqrt{5}-1}$
- (iv)  $6(1+\sqrt{3})^{-2}$ (c) Express  $\frac{5+\sqrt{2}}{3-2\sqrt{2}} \frac{5-\sqrt{2}}{3+\sqrt{2}}$  in the form
- (d) Evaluate the following

(i) 
$$\frac{2\sqrt{2}}{\sqrt{48}-\sqrt{8}-\sqrt{27}}$$

(e) If  $\frac{a}{\sqrt{3}+1} + \frac{b}{\sqrt{3}-1} = \sqrt{3} - 3$ , find the possible values of a and b.

12.

- (a) Rationalize  $\frac{1}{\sqrt{2}+1}$
- (b) Simplify  $\frac{\sqrt{3}}{\sqrt{3}-1} + \frac{\sqrt{3}}{\sqrt{3}+1}$ (c) Simplify  $\frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}} \frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}}$
- (d) Express  $\frac{\sqrt{8}}{\sqrt{7}-\sqrt{5}}$  in the form  $\sqrt{a}+\sqrt{b}$ , where a and b are integers.
- (e) Given that  $28 + p\sqrt{3} = (q + 2\sqrt{3})^2$ , where p and q are integers, find the values of p and of q.
- 13. Solve the following simultaneous equations giving your answers for both x and y in the form  $a + b\sqrt{3}$ , where a and b are integers.

$$2x + y = 9$$

$$\sqrt{3}x + 2y = 5$$

#### **NUMBER BASES**

Decimal number system or base 10 uses the digits or numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Binary number system, base 2, uses the digits 0 and 1.

Digits for base 3: 0, 1, 2

Digits for base 7: 0, 1, 2, 3, 4, 5, 6

Digits for Duodecimal number system, base 12: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *T* and *E*.

Here one the first few numbers in base five: 0, 1, 2, 3, 4, 10, 11, 13, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34.

These are read zero, one, two, three, four, one – zero, one – one, one – two, one – three, one – four, two – zero, two – one, etc.

#### NOTE:

In each of these number systems, the number of digits contained within the system is the name of the system. Base 2 has two digits, Base 3 has 3 digits, ..., base 10 has 10 digits etc. each system starts counting with 0.

#### CONVERTING FROM NUMBER BASE TEN (DECIMAL NUMERAL) TO OTHER BASES

To change from base 10 to a different base, the decimal numeral is divided repeatedly by the appropriate base number until there is nothing left to divide. The answer is obtained by reading the remainders upwards.

#### Example 1

Convert the following to base 7

(ii) 664<sub>ten</sub>

#### Solution...

We divide repeatedly by 7

(i)

| 7 | 243      |
|---|----------|
| 7 | 34 rem 5 |
| 7 | 4 rem 6  |
|   | 0 rem 4  |

$$\therefore 243_{\text{ten}} = 465_{\text{seven}}$$

| 7 | 664      |
|---|----------|
| 7 | 94 rem 6 |
| 7 | 13 rem 3 |
| 7 | 1 rem 6  |
|   | 0 rem 1  |

$$\therefore 664_{\text{ten}} = 1636_{\text{seven}}$$

#### Example 2

Express 267<sub>ten</sub> as a number in base twelve.

#### Solution...

We divide repeatedly by 12

| , raid repeated any by | ·        |
|------------------------|----------|
| 12                     | 267      |
| 12                     | 22 rem 3 |
| 12                     | 1 rem 10 |
|                        | 0 rem 1  |

$$\therefore 267_{\text{ten}} = 173_{\text{twelve}}$$

Note that 10 is represented by *T* in base twelve.

| Exercise 1  | Date: |
|-------------|-------|
| LVCI CI9C T | Date  |

- 1. Convert 35<sub>ten</sub> to a binary number.
- 2. Convert 77<sub>ten</sub> to a binary number
- 3. Convert  $89_{ten}$  to a number in base two.

| 4. | Write 37 <sub>ten</sub> as a number in base five. |
|----|---------------------------------------------------|
|    |                                                   |
|    |                                                   |

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |

| <del> </del> |  |
|--------------|--|
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |

\_\_\_\_\_\_

| <del></del>                                  |  |
|----------------------------------------------|--|
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
| Exercise 2 Date:                             |  |
| Write $138_{ten}$ as a number in each of the |  |
| following bases.                             |  |
| (i) Twelve (iv) Five                         |  |
|                                              |  |
| (ii) Eight (v) Four                          |  |
| ()8                                          |  |
| (iii) Seven                                  |  |

| Exercise 3                    | Date:                     |                                                                                |
|-------------------------------|---------------------------|--------------------------------------------------------------------------------|
| Express 2138 <sub>ten</sub> a | s a number in each of the |                                                                                |
| following bases.              |                           |                                                                                |
| (i) Twelve                    | (iii) Seven               |                                                                                |
| · /                           | . ,                       |                                                                                |
| (ii) Eight                    | (iv) Five                 |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           |                                                                                |
|                               |                           | COVERTING FROM OTHER BASES TO A                                                |
|                               |                           |                                                                                |
|                               |                           | NUMBER BASE TEN                                                                |
|                               |                           |                                                                                |
|                               |                           | NOTE:                                                                          |
|                               |                           | Numbers such as 222, 1006 can be written                                       |
|                               |                           | in expanded from using the appropriate                                         |
|                               |                           | column headings.                                                               |
|                               |                           | column neadings.                                                               |
|                               |                           |                                                                                |
|                               |                           | $222 = (2 \times 100) + (2 \times 10) + (2 \times 1)$ using                    |
|                               |                           | exponents;                                                                     |
|                               |                           |                                                                                |
|                               |                           | $222 = (2 \times 10^2) + (2 \times 10^1) + (2 \times 10^0)$                    |
|                               |                           | 222 - (2 × 10 ) + (2 × 10 ) + (2 × 10 )                                        |
|                               |                           | NOWN 400 4                                                                     |
|                               |                           | <b>NOTE:</b> $10^0 = 1$                                                        |
|                               |                           |                                                                                |
|                               |                           | Similarly,                                                                     |
|                               |                           | $1006 = (1 \times 10^3) + (0 \times 10^2) + (0 \times 10^1) + (6 \times 10^0)$ |
|                               |                           | 1000 (110) (010) (010)                                                         |
|                               |                           | We also know that the solver has ding-for-                                     |
|                               |                           | We also know that the column headings for                                      |
|                               |                           | base seven are ones, sevenths, 49s (7 <sup>2</sup> ),                          |
|                               |                           | $343s (7^3)$ and so on. This means that $54327$                                |
|                               |                           | can be written in its expanded as:                                             |
|                               |                           | can be written in the enpairment up.                                           |
|                               |                           | F422                                                                           |
|                               |                           | 54327                                                                          |
|                               |                           | $= (5 \times 7^3) + (4 \times 7^2) + (3 \times 7^1) + (2 \times 7^0)$          |
|                               |                           |                                                                                |
|                               |                           | <b>NOTE:</b> $7^0 = 1$ .                                                       |
|                               |                           |                                                                                |
|                               |                           | In gonoval any number non-                                                     |
|                               |                           | In general any number zero numeral to the                                      |
|                               |                           | power zero is 1. i.e. $a^0 = 1$ .                                              |

| Example 3 Write $11001_{\rm two}$ as a number in base tern.                                                                                                                                                                                                     |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| <b>Solution</b> List the digits in order, and count them from right to left, starting with zero.                                                                                                                                                                |                  |
| Digits: 1 1 0 0 1<br>Numbering: 4 3 2 1 0                                                                                                                                                                                                                       |                  |
| Use this listing to convert each digit to the power of two that it represents:                                                                                                                                                                                  |                  |
| $\begin{aligned} &11001_2 \\ &= (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 1^0) \\ &= (1 \times 16) + (1 \times 8(+(0 \times 4) + (0 \times 2) + (1 \times 1)) \\ &= 16 + 8 + 0 + 0 + 1 \\ &= 25_{\text{ten}} \end{aligned}$ |                  |
| $11001_2 = 25_{\text{ten}}$                                                                                                                                                                                                                                     |                  |
| Exercise 4 Date: Convert the following numbers to base ten.                                                                                                                                                                                                     |                  |
| 1. 333 <sub>four</sub> 4. 2213 <sub>four</sub> 2. 564 <sub>seven</sub> 5. 11010 <sub>two</sub> 3. 7345 <sub>eight</sub>                                                                                                                                         |                  |
|                                                                                                                                                                                                                                                                 |                  |
|                                                                                                                                                                                                                                                                 |                  |
| <del></del>                                                                                                                                                                                                                                                     |                  |
|                                                                                                                                                                                                                                                                 |                  |
|                                                                                                                                                                                                                                                                 | Exercise 5 Date: |
|                                                                                                                                                                                                                                                                 |                  |
|                                                                                                                                                                                                                                                                 |                  |
|                                                                                                                                                                                                                                                                 |                  |
|                                                                                                                                                                                                                                                                 |                  |
| <del></del>                                                                                                                                                                                                                                                     |                  |
|                                                                                                                                                                                                                                                                 |                  |
|                                                                                                                                                                                                                                                                 |                  |

| Exercise 6 Date:                                 |  |
|--------------------------------------------------|--|
| Convert the following numbers to decimal         |  |
| numeral.                                         |  |
| 1 101101 / 1202                                  |  |
| 1. 101101 <sub>two</sub> 4. 1203 <sub>five</sub> |  |
| 2. $10011_{\text{two}}$ 5. $\sqrt{11001_2}$      |  |
| 3. $1120_{\text{five}}$ 6. $11.011_{\text{two}}$ |  |
| o. 1120 <sub>flve</sub> o. 11.011 <sub>two</sub> |  |

#### CONVERSION BETWEEN NON – DECIMAL BASES

To convert between non – decimal bases.

- 1. Convert to base ten and then
- 2. Convert the result to the required base.

In other words, converting a number in base m to a number in base n (both being non – decimals) is done by first converting from base m to base ten (decimal) and finally from base 10 to base n. i.e.



#### Example 4

Convert  $42_{\text{five}}$  to a base three numeral.

#### Solution...

**Step 1:** Change 42<sub>five</sub> to base ten.

$$42_5 = (4 \times 5^1) + (2 \times 5^0)$$
  
= 20 + 2 = 22

**Step 2:** We then convert 22<sub>ten</sub> to a number base three.

| 3 | 22      |   |
|---|---------|---|
| 3 | 7 rem 1 | 1 |
| 3 | 2 rem 1 |   |
|   | 0 rem 2 |   |

$$\therefore 42_{\text{five}} = 211_{\text{three}}$$

#### Exercise 7

Date:....

- 1. Express 112<sub>seven</sub> as a number in base four.
- 2. Express  $441_{\rm five}$  as a number in base four.
- 3. Convert  $11010_{two}$  as a number in base five.
- 4. Convert 7345<sub>eight</sub> as a number in base six.
- 5. Convert  $3T0E_{\text{twelve}}$  as a number in base four
- 6.  $\sqrt{1001_{two}}$ , leaving your answer in base two.

| <del>-</del>                                            |  |
|---------------------------------------------------------|--|
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
| SOLVING EQUATIONS INVOLVING NUMBER                      |  |
| BASES                                                   |  |
| More, the right hand side of the equation is            |  |
| already in base 10, so we only convert the              |  |
| left hand side of the equation to base ten:             |  |
| rest state of the equation to base test.                |  |
| Example 5                                               |  |
| Solve $132_x = 42_{\text{ten}}$                         |  |
| solve 192 <sub>x</sub> 12 <sub>ten</sub>                |  |
| Solution                                                |  |
| $(1 \times x^2) + (3 \times x^2) + (2 \times x^0) = 42$ |  |
| $x^2 + 3x + 2 = 42$                                     |  |
| $x^2 + 3x - 40 = 0$                                     |  |
| $x^2 + 8x - 5x - 40 = 0$                                |  |
| x(x+8) - 5(x+8) = 0                                     |  |
| (x+8)(x-5) = 0                                          |  |
| x = -8  or  x = 5                                       |  |
| $\therefore x = 5 \text{ since } x > 0$                 |  |
|                                                         |  |
| Exercise 8 Date:                                        |  |
| Find the value of $x$ in each of the following          |  |
| equations.                                              |  |
| 1. $133_x = 73_{\text{ten}}$                            |  |
| 2. $123_x = 38_{\text{ten}}$                            |  |
| 3. $23_x = 1111_{\text{two}}$                           |  |
| 4. $57_{\text{eight}} = 233_x$                          |  |
| 5. $110_x = 1020_{\text{four}}$                         |  |
| $\sim 110\chi$ $\sim 1020$ four                         |  |

|             | Exercise 9 Date:                                                   |
|-------------|--------------------------------------------------------------------|
|             | Find the value of $x$ in each of the following                     |
|             | equations.                                                         |
|             | 1. $x_{\text{four}} = 145_6$                                       |
|             | 2. $243_x = 73$                                                    |
|             | 3. $233_x = 125_{\text{seven}}$                                    |
|             | $\frac{3.233_{\chi}-123_{\text{seven}}}{4.211-320}$                |
|             | 4. $211_x = 320_{\text{four}}$<br>5. $105_{\text{twelve}} = 302_x$ |
|             | $5.  105_{\text{twelve}} = 502_{\chi}$                             |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
| <del></del> |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
| <del></del> |                                                                    |
|             |                                                                    |
|             |                                                                    |
| <del></del> |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
| <del></del> |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |
|             |                                                                    |

| <del></del>                                     |  |
|-------------------------------------------------|--|
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
| <del></del>                                     |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
| <del></del>                                     |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
| Exercise 10 Date:                               |  |
| Solve the following equations.                  |  |
|                                                 |  |
| 1. $312_{\text{four}} + 52_x = 96_{\text{ten}}$ |  |
| 2. $365_{\text{seven}} + 43_x = 217$            |  |
| 3. $3(14)_x = 45_x$                             |  |
| 4. $124_x = 7(14_x)$                            |  |
| 5. Given that $425_6 = 320_x$ , evaluate        |  |
| $123_x - 34_x$ .                                |  |
| 6.                                              |  |
| (a) If 135 to the base $n$ is equal to 76,      |  |
| find $n$ .                                      |  |
| (b) A number is written as 37 in base $x$ .     |  |
|                                                 |  |
| Twice the number is written as 75               |  |
| in base $x$ . Find the value of $x$ .           |  |

| PERFORMING OPERATION ON NUMBER BASES In base ten, we know that $9+1=1+9=10$ $8+2=2+8=10$ $7+3=3+7=10$     |
|-----------------------------------------------------------------------------------------------------------|
| ∴ When we work out, for example 7 + 6, we can think of it as: 7 + (3 + 3) = (7 + 3) + 3 = 10 + 3 = 13     |
| Similarly in base five, $4+1=1+4=10_{\rm five}$ $4+3=4+(1+2)=(4+1)+2$ $=10_{\rm five}+2$ $=12_{\rm five}$ |
| <b>NOTE:</b> The principles and techniques developed for base five can be applied to other bases.         |
| Exercise 11 Date:                                                                                         |
| 2. 1 1<br>+3 4<br>5. 2 3<br>+ 2 2                                                                         |
| 3. 3 3<br>+ 2 1 + 4 4<br>                                                                                 |
| Exercise 12 Date:                                                                                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                     |
| 3. 111<br>+ 111                                                                                           |
|                                                                                                           |

#### Exercise 13

Date:....

The following numbers are in base four. Find the sums.

#### Exercise 14

Date:....

The following are base eight number. Find the sums.

#### Exercise 15

Date:....

Add in base twelve.

#### **SUBTRACTION**

#### Example 6

**Evaluate** 

- $10110_2 1011_2$ (i)
- $43_7 26_7$ (ii)

#### Solution...

Starting from right, borrow 2 from the second column i.e. 2 + 0 - 1 = 1. We again borrow 2 from the next column i.e. 2 + 0 - 1 = 1. The next column becomes 0 - 0 = 0. We borrow 2 from the fifth column i.e. 2 + 0 - 1 = 1.

(ii) 
$$\begin{array}{r} 43_{7} \\ 26_{7} \\ \hline 14_{7} \end{array}$$

Starting from right we borrow 7 from the second column i.e. 7 + 3 - 6 = 4. The next column becomes 3 - 2 = 1.

#### Exercise 16

Date:.....

Perform the following operations.

$$\begin{array}{rrr}
4. & 2 & 4 & 2_7 \\
 & - & 4 & 5_7
\end{array}$$

Exercise 17 Date:.... Perform the following operations.

1. 67<sub>8</sub> - 46<sub>8</sub> 2. 313<sub>8</sub> - 161<sub>8</sub>

4.  $782_{12} - 2E9_{12}$ 5.  $T0E_{12} - 82T_{12}$ 

 $3. 2002_8 - 333_8$ 

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

|                                                | Exercise 19 Date: |
|------------------------------------------------|-------------------|
| Exercise 18 Date:                              |                   |
| Evaluate the following                         |                   |
|                                                |                   |
| (i) $11011_{\text{two}} - 101_{\text{two}}$    |                   |
| (ii) $11011_{\text{two}} - 1101_{\text{two}}$  |                   |
| (iii) $523_{\text{seven}} - 65_{\text{seven}}$ |                   |
| $(iv) 	 1341_{five} - 242_{five}$              |                   |
|                                                |                   |
|                                                |                   |
|                                                |                   |
|                                                |                   |
|                                                |                   |
| <del></del>                                    |                   |
|                                                |                   |
|                                                |                   |
|                                                |                   |
|                                                |                   |
|                                                |                   |
|                                                |                   |

| T                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|
| Exercise 20 Date:                                                                                                                     |  |
|                                                                                                                                       |  |
| <ol> <li>Arrange the following numbers in</li> </ol>                                                                                  |  |
| ascending order of magnitude.                                                                                                         |  |
| ascending of det of magnitude.                                                                                                        |  |
| (a) 21 <sub>8</sub> , 25 <sub>8</sub> , 30 <sub>6</sub>                                                                               |  |
| (1) 44044 400 00                                                                                                                      |  |
| (b) 11011 <sub>2</sub> , 130 <sub>4</sub> , 26 <sub>10</sub>                                                                          |  |
| (a) 111 10011 and 20                                                                                                                  |  |
| (c) $111_{\text{four}}$ , $10011_{\text{two}}$ and $20_{\text{ten}}$                                                                  |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
| <ol><li>Arrange the following in descending</li></ol>                                                                                 |  |
| = 1 and the same in a document                                                                                                        |  |
| order of magnitude.                                                                                                                   |  |
|                                                                                                                                       |  |
| (2) 22 24 21                                                                                                                          |  |
| (a) 22 <sub>3</sub> , 34 <sub>5</sub> , 21 <sub>6</sub>                                                                               |  |
| (a) 22 <sub>3</sub> , 34 <sub>5</sub> , 21 <sub>6</sub><br>(b) 20 <sub>6</sub> 30 <sub>6</sub> 23 <sub>7</sub> 19 <sub>66</sub>       |  |
| (a) 22 <sub>3</sub> , 34 <sub>5</sub> , 21 <sub>6</sub><br>(b) 20 <sub>8</sub> , 30 <sub>6</sub> , 23 <sub>7</sub> , 19 <sub>12</sub> |  |
| (a) 22 <sub>3</sub> , 34 <sub>5</sub> , 21 <sub>6</sub><br>(b) 20 <sub>8</sub> , 30 <sub>6</sub> , 23 <sub>7</sub> , 19 <sub>12</sub> |  |

| Exer | cise 21 Date:                                         |    | ercise        |                                                                                 |
|------|-------------------------------------------------------|----|---------------|---------------------------------------------------------------------------------|
|      | Subtract 65 <sub>7</sub> from 523 <sub>7</sub> .      | 1. | If 4 <i>n</i> | $14_{\rm five} = 119_{\rm ten}$ , what is the value of                          |
| 2. I | Evaluate $141_6 + 233_6 - 102_6$ .                    |    | m?            |                                                                                 |
| 3. I | Find the base addition for                            |    |               |                                                                                 |
| 3    | 35 + 53 = 122.                                        | 2. | Solve         | e the equation                                                                  |
|      | If $243_x + 452_x = 1135_x$ , find the value of $x$ . |    |               | $1)_2 Y - 11_2 (Y - 1) = 100_2$                                                 |
|      | In what number base was the addition                  | 2  | Whi           | ch base five numeral is equivalent                                              |
|      | 1 + mn = 100, where $n > 0$ , done?                   | 3. | to (4         | $5^{0}$ : (1) $+ (0 \times 5^{2}) + (2 \times 5^{1}) + (5^{0})$ ?               |
|      |                                                       |    |               |                                                                                 |
|      |                                                       | 4. | <i>(</i> 1)   | m 1                                                                             |
|      |                                                       |    | (i)           | The subtraction below is in base seven. Find the missing number.                |
|      |                                                       |    |               | 5 1 6 2                                                                         |
|      |                                                       |    |               | - 2644                                                                          |
|      |                                                       |    |               | $\frac{2011}{2*15}$                                                             |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    | (ii)          | Find the missing number in the addition of the following numbers in base seven. |
|      |                                                       |    |               | iii base seven.                                                                 |
|      |                                                       |    |               | 4 3 2 1                                                                         |
|      |                                                       |    |               | 1 2 3 4                                                                         |
|      |                                                       |    |               | + * * * *                                                                       |
|      |                                                       |    |               | 1 2 3 4 1                                                                       |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    | (iii)         | The following subtraction was                                                   |
|      |                                                       |    |               | performed in base four. Find the                                                |
|      |                                                       |    |               | missing number.                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               | 3 0 1 2                                                                         |
|      |                                                       |    |               | * * * *                                                                         |
|      |                                                       |    |               | 1 3 3 3                                                                         |
|      |                                                       |    | <i>(</i> , )  | 4 0 4 0 4                                                                       |
|      |                                                       |    | (iv)          | 1 0 1 0 1                                                                       |
|      |                                                       |    |               | 1 0 0 1                                                                         |
|      |                                                       |    |               | $\frac{+  * \ * \ * \ * \ *}{1 \ 1 \ 1 \ 0 \ 0 \ 1}$                            |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               | Find the missing number in the                                                  |
|      |                                                       |    |               | addition base 2.                                                                |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |
|      |                                                       |    |               |                                                                                 |

|             | MULTIPLICATION                                                                |
|-------------|-------------------------------------------------------------------------------|
|             | Francis 22 Date                                                               |
|             | Exercise 23 Date:  Evaluate the following.                                    |
|             | 1. 3 1 2 <sub>4</sub> 4. 2 4 3 <sub>5</sub>                                   |
|             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                          |
|             | <u> </u>                                                                      |
|             |                                                                               |
| <del></del> | 2. 3 1 3 <sub>4</sub> 5. 5 4 2 <sub>7</sub>                                   |
|             | $\times$ 2 3 <sub>4</sub> $\times$ 5 1 <sub>7</sub>                           |
|             |                                                                               |
|             |                                                                               |
| <del></del> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                          |
|             | $\frac{\lambda  2  3_5}{}$ $\frac{\lambda  4  1_8}{}$                         |
|             | <del></del>                                                                   |
|             |                                                                               |
| <del></del> | Exercise 24 Date:                                                             |
|             | Evaluate the following.                                                       |
|             | 1. $1011_2 \times 1101_2$                                                     |
|             | 2. 21 <sub>3</sub> × 21 <sub>3</sub>                                          |
|             | 3. $1011_2 \times 101_2$<br>4. $1101_2 \times 111_2$                          |
|             | 5. $(111_2 + 101_2)(111_2 - 101_2)$                                           |
|             | 3. (111 <sub>2</sub> + 101 <sub>2</sub> )(111 <sub>2</sub> 101 <sub>2</sub> ) |
|             |                                                                               |
| <del></del> |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
| <del></del> |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
| <del></del> |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
| <del></del> |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |

| Exercise 25 Date:                                                            |  |
|------------------------------------------------------------------------------|--|
|                                                                              |  |
| Evaluate the following                                                       |  |
| 1. $2102_3 \times 122_3$                                                     |  |
| 2 (444 )?                                                                    |  |
| $2. (111_{two})^2$                                                           |  |
| 2. $(111_{two})^2$<br>3. $(20_3)^2 - (11_3)^2$<br>4. $(202_3)^2 - (112_3)^2$ |  |
| 3. $(20_3)^{-}(11_3)^{-}$                                                    |  |
| 4. $(202_0)^2 - (112_0)^2$                                                   |  |
| 1. (2023) (1123)                                                             |  |
|                                                                              |  |

#### Exercise 26

Date:....

1. Copy and complete the following multiplication table in base seven.

| × | 3  | 4 | 5 |
|---|----|---|---|
| 1 | 3  |   |   |
| 2 | 6  |   |   |
| 3 | 12 |   |   |

2. Copy and complete the binary multiplication table.

| mener production teasier |     |    |       |       |
|--------------------------|-----|----|-------|-------|
| ×                        | 10  | 11 | 100   | 101   |
| 10                       | 100 | _  | 1000  | _     |
| 11                       | 110 | _  | 1100  | _     |
| 100                      | _   | _  | 10000 | 10100 |

3. If  $124_n = 232_{\text{five}}$ , find *n*.

| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |

| _ | <br> |      |      |
|---|------|------|------|
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
| - | <br> | <br> | <br> |
|   |      |      |      |
|   |      |      |      |
| - | <br> | <br> | <br> |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |

Exercise 27 Date:.....

1. If all numbers in the equation  $\frac{y}{y+101} = \frac{11}{10010}$  are in base two, solve for y.

2. A number is written as  $14_n$ . If three times the number is equal to  $45_n$ , find the value of n.

3.

- (i) Draw the multiplication table ( $\otimes$ ) in base 6 on the set {1, 2, 3, 4}
- (ii) From the table, solve:
  - $\alpha$ )  $2 \otimes x = 2$
  - $\beta$ )  $m \otimes m = 4$

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
| <u> </u>    |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

### **RELATIONS & FUNCTIONS**

#### RELATIONS

A relation is an association between two non-empty sets. It may also be defined as a set of ordered pairs, (x, y). The set of first components x values, in the ordered pairs is the domain of the relation. The set of the second components, y —value is called the range of the relation.



From the diagram, an element  $x \in X$  (domain) is related to an element  $y \in Y$  (codomain), we say y is the image of x. The set of all images is called the range. The range is a subset of the co-domain.

#### NOTE:

A relation may exist between two sets and not all the elements of the domain may be associated with the elements of the co – domain and vice – versa.

For example,





From the arrow diagram,

(i) Domain =  $\{a, b, c\}$ 

Co-domain= 
$$\{m, p\}$$

Range = 
$$\{m, p\}$$

Clearly the element  $b \in X$  has no image in Y

(ii) Domain = 
$$\{m, n, p\}$$

Co – domain = 
$$\{1,2,3,4,5\}$$

Range = 
$$\{1,3,5\}$$

The elements 
$$2,4 \in Y$$
 are not images of the members of the domain(X).

In both examples (i) and (ii) the range is a subset of the co-domain.

Exercise 1

Date:....

1.



In the relation above, write down the:

- (i) domain
- (ii) co domain
- (iii) range
- 2. Determine the domain and range of the following relations.
  - (i) (3,2),(2,3),(3,3)
  - (ii) (-5,2), (0,2), (-5,3).

| <br> |
|------|
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |

| Exercise 2 Date:                                          |  |
|-----------------------------------------------------------|--|
| 1. $A \rightarrow$ "is square root of"                    |  |
| 1. $A \rightarrow 15$ Square 1000 or                      |  |
| A B                                                       |  |
|                                                           |  |
| $\int 5 \longrightarrow b$                                |  |
|                                                           |  |
| a → 81                                                    |  |
| $11 \longrightarrow c$                                    |  |
|                                                           |  |
| $8 \longrightarrow d$                                     |  |
|                                                           |  |
| (a) Determine the value of                                |  |
| (i) a (iii) c                                             |  |
| (ii) $b$ (iv) $d$                                         |  |
| (11) $D$ $(11)$ $U$                                       |  |
| (b) Write down the                                        |  |
| (i) domain                                                |  |
|                                                           |  |
| (ii) range<br>(iii) co – domain                           |  |
| (iii) co – domain                                         |  |
| 2 If got A — (mains a number of greater than              |  |
| 2. If set $A = \{\text{prime numbers greater than } 1 \}$ |  |
| 1 but less than 14} and the relation is                   |  |
| 'subtract from 14', find all the elements                 |  |
| in the co – domain, B. Draw arrow                         |  |
| diagram between $A$ and $B$ .                             |  |
|                                                           |  |
|                                                           |  |
|                                                           |  |
|                                                           |  |
|                                                           |  |
|                                                           |  |
|                                                           |  |
|                                                           |  |
|                                                           |  |
|                                                           |  |

### Exercise 3 Date:.....

State the relation from the first set to the second set and match the members in each pair of sets.

- 1. G = {beans, cereals, fruits, fish, palm oil} H = {carbohydrate, protein, fat}
- J = {dog, bird, goat, lion}K = {nest, kennel, den, pen house}
- 3. M = {hen, parrot, lizard, snake, cat, dog} N = {bird, mammal, reptile}
- 4. N = {aeroplane, car, canoe, train, ship}
  P = {rail, road, sea}

| <br> |      |      |
|------|------|------|
| <br> | <br> | <br> |
| <br> | <br> | <br> |
|      |      |      |

| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |

| <br> |
|------|
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |

#### TYPES OF RELATIONS

#### (i) One-to-one relation

A relation is said to be the one-to-one if each element in the domain associates to a unique element in the co-domain.



Clearly each element in the domain associates to a unique element in the co – domain.

i.e.  $x_1$  associates to only  $y_1$ ,  $x_2$  associates to only  $y_2$ ,  $x_3$  associates to only  $y_3$ .

### (ii) Many-to-one relations

A relation is said to be many-to-one if at least two different elements of the domain (X) have the same image in the co-domain(Y).



Clearly from the diagram, there exist  $x_2, x_3 \in X$  which associate to  $y_1 \in Y$ .

#### (iii) One-to-many relations

A relation is said to be one to many if at least one element in the domain (X) has more than one image in the co-domain (Y)



Clearly from the diagram, there exist  $x_2 \in X$  which associates to  $y_1, y_3 \in Y$ .

### (iv) Many-to-many relations

A relation is said to be many-to-many if at least one element in the domain X associates to more than one image in the co-domain (Y) and at least two different elements of the domain(X) associate to the same image in the co-domain (Y).



### Exercise 4 Date:.....

For each of the following pairs of sets, the relation from the first set to the second set is stated. Match the members and identify the type of relation.

- A = {Ga, Ewe, Akan, Dagomba}
   B = {Nana, Nii, Na, Togbe}
   Relation: 'is a Chief's title in'
- 2.  $C = \{1, 2, 3, 12\}$   $D = \{4, 6, 9, 24\}$ Relation: 'is a multiple of'
- 3.  $E = \{-3, -2, -1, 0, 1, 2\}$   $F = \{1, 4, 9\}$ Relation: 'is the square of'
- 4.  $G = \{4, 6, 9, 10\}$   $H = \{0, 1, 2, 3, 5\}$ Relation: 'is a factor of'
- 5. P = {pressure, rainfall, temperature, wind}L = {thermometer, barometer, rain guage, wind vane}Relation: 'is an instrument for measuring'

| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

#### **MAPPINGS**

A mapping is a relation in which each element in the domain (X) associates onto exactly one element in the co-domain (Y). From this definition, a one-to-one relation and many-to-one relations are mappings. However, many-to-one and one to many relations are not mappings since each element of their domain does not correspond to exactly one element in the co-domain.

#### Example

Make a table of the mapping defines by the rule 2x + 1 on the domain.

#### Solution...



#### Exercise 5

Make a table of the mapping defined by each of the following rules in the domain  $\{-2, -1, 0, 1, 2, 3, 4\}$ .

Date:....

1. 
$$x \rightarrow 3x - 1$$

$$2. \quad x \longrightarrow \frac{1}{2}x + 1$$

3. 
$$x \rightarrow x^2 + 2$$

4. 
$$x \rightarrow 3x^2 - 2$$

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

| Exercise 6 Date: |                                                           |
|------------------|-----------------------------------------------------------|
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  | <del></del>                                               |
|                  | <del></del>                                               |
|                  | <del></del>                                               |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  |                                                           |
|                  | Exercise 7 Date:                                          |
|                  |                                                           |
|                  | (i) What is the image of $\frac{1}{4}$ under the mapping? |
|                  | (ii) Find the domain which                                |
|                  | associates the mapping to $\frac{1}{4}$ .                 |
|                  | 2. Match sticks are used to make the                      |
|                  | following patterns.                                       |
|                  |                                                           |
|                  |                                                           |
|                  | Pattern 1 Pattern 2 Pattern 3                             |

Complete the table for the number of sticks in the perimeter and the pattern.

| Pattern number 1 2 3 n  | 1 | 2 | 3 | 4 | 5 | 6 | p |
|-------------------------|---|---|---|---|---|---|---|
| Sticks in the perimeter | 4 | 6 |   |   |   |   |   |
| Total number of sticks  | 4 | 7 |   |   |   |   |   |

| icks in the perimeter         | 4                  | 6      |             |                           |       |     |     |   |   |
|-------------------------------|--------------------|--------|-------------|---------------------------|-------|-----|-----|---|---|
| otal number of sticks         | 4                  | 7      |             |                           |       |     |     |   |   |
| Using your tab                | ole fir            | nd the | e nur       | nber                      | of m  | ıat | ch  |   |   |
| sticks                        |                    |        |             |                           |       |     |     |   |   |
| i. In the po<br>ii. In the 20 | 0 <sup>th</sup> pa | itterr | n une<br>1. | : <b>۷</b> 0 <sup>m</sup> | patt  | .er | 11. |   |   |
| iii. In the pe                | erime              | eter c | of the      | $n^{ m th}$ p             | oatte | rn  | ۱.  |   |   |
| iv. In the $n$                | th pat             | ttern  | l.          |                           |       |     |     |   |   |
|                               |                    |        |             |                           |       |     |     | _ |   |
|                               |                    |        |             |                           |       |     |     | _ |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | • |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | _ |   |
|                               |                    |        |             |                           |       |     |     | _ |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | • |   |
|                               |                    |        |             |                           |       |     |     | • |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | - |   |
|                               |                    |        |             |                           |       |     |     | _ |   |
|                               |                    |        |             |                           |       |     |     | _ |   |
|                               |                    |        |             |                           |       |     |     |   |   |
|                               |                    |        |             |                           |       |     |     | • | · |

### **RULE FOR MAPPING**

### **Linear Mapping**

The rule of a linear mapping is of the form:

$$y = ax + b$$

Where  $a = \frac{\text{constant difference of co-domain}}{\text{constant difference of domain}}$ And b can be determined by substituting an element of the domain and its image in the co – domain into the rule.

### Example 1

Find the rule of the mapping



#### Solution...

There is a constant difference of 3 between consecutive elements of the co – domain. (i.e. 14 - 11 = 11 - 8 = 8 - 5 = 5 - 2 = 3)

There is also a common difference of 1 between consecutive terms of the domain.

$$a = \frac{\text{constant difference of co-domain}}{\text{constant difference of domain}}$$
$$= \frac{3}{1} = 3$$

 $\therefore$  y = 3x + b, where b is a constant to be determined.

When x = 1, y = 2

$$\therefore 2 = 3(1) + b$$

$$\therefore b = -1$$

$$\therefore y = 3x - 1.$$

#### **EXPONENTIAL MAPPING**

The rule of an exponential mapping is of the form:

$$y = b \frac{r^x}{r^a}$$

Where a is the first element in the domain, b is the first element in the co – domain and r is the constant ratio between consecutive elements of the co – domain.

Exercise 8 Date:......
Find the rules for the following mapping.

1.



2.



3.



4.

| 2              | 3                 | 4               |
|----------------|-------------------|-----------------|
|                |                   | - 1             |
| <b>♦</b><br>-2 | _ 3<br>_ <b>♦</b> | <b>♦</b><br>_ 4 |

| <br>                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
| <br>                                                                                                                                                                                        |
|                                                                                                                                                                                             |
| <br>                                                                                                                                                                                        |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
| <br>                                                                                                                                                                                        |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
| <br>                                                                                                                                                                                        |
|                                                                                                                                                                                             |
| <br>                                                                                                                                                                                        |
| п . о ъ.                                                                                                                                                                                    |
| I Exorcico U Hotoi                                                                                                                                                                          |
| <br>Exercise 9 Date:                                                                                                                                                                        |
|                                                                                                                                                                                             |
| Find the rule for each of the following                                                                                                                                                     |
| Find the rule for each of the following mappings.                                                                                                                                           |
| Find the rule for each of the following mappings.                                                                                                                                           |
| Find the rule for each of the following mappings.  1.                                                                                                                                       |
| Find the rule for each of the following mappings.  1.                                                                                                                                       |
| Find the rule for each of the following mappings. 1.                                                                                                                                        |
| Find the rule for each of the following mappings.  1.                                                                                                                                       |
| Find the rule for each of the following mappings.  1.                                                                                                                                       |
| Find the rule for each of the following mappings.  1.                                                                                                                                       |
| Find the rule for each of the following mappings.  1.                                                                                                                                       |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5                                                                                                                          |
| Find the rule for each of the following mappings.  1.                                                                                                                                       |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17                                                                                                      |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5                                                                                                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17                                                                                                      |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.                                                                                                  |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17                                                                                                      |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.                                                                                                  |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.                                                                                                  |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.                                                                                                  |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.                                                                                                  |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.  0 1 2 3 4 5 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.                                                                                                  |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 14 17                                                                                |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.  0 1 2 3 4 5 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 14 17                                                                                |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 1 14 17  3.                                                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 1 14 17  3.                                                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 14 17                                                                                |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 1 14 17  3.                                                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 1 14 17  3.                                                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 1 14 17  3.                                                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 1 14 17  3.  0 1 2 3 4 5  1 1 14 17  3.                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 1 14 17  3.  0 1 2 3 4 5  1 1 14 17  3.                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 1 14 17  3.  0 1 2 3 4 5  1 1 14 17  3.                                          |
| Find the rule for each of the following mappings.  1.  0 1 2 3 4 5  1.  2 5 8 11 14 17  2.  0 1 2 3 4 5  1 4 5  1 4 5  1 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8                              |



2

6.



1

| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |

3.



4.

| 1        | 2        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|
|          |          |          |          |          |          |
|          |          |          |          |          |          |
| <b>↓</b> | <b>↓</b> | <b>↓</b> | <b>↓</b> | <b>↓</b> | <b>\</b> |
| 5        | 13       | 21       | 29       | 37       | 45       |

5.



Exercise 10 Date:.....
Find the rule for each of the following

mappings.

1.



2.



| <br>                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                      |
| <br>                                                                                                                                                                 |
| <br>                                                                                                                                                                 |
|                                                                                                                                                                      |
| <br>                                                                                                                                                                 |
| <br>                                                                                                                                                                 |
|                                                                                                                                                                      |
| <br>                                                                                                                                                                 |
| <br>                                                                                                                                                                 |
|                                                                                                                                                                      |
| <br><ul> <li>Exercise 11 Date:</li> <li>1. A car uses 10 litres of petrol for every 100km. make a table of the mappings: Distance travelled → petrol used</li> </ul> |
| <br>(up to a distance of $500 \text{km}$ )                                                                                                                           |
| <br>2. It costs GH¢200.00 to hire a labourer to                                                                                                                      |
| <br>clear an acre of a cocoa farm. Make a                                                                                                                            |
| <br>table for the mapping for the cost of                                                                                                                            |
| cleaning up to five acres of land.                                                                                                                                   |
| 2 A pointon uses E litros of point for a wall                                                                                                                        |
| <br><ol> <li>A painter uses 5 litres of paint for a wall<br/>of area 4.5m<sup>2</sup>. Make a table for the wall</li> </ol>                                          |
| <br>painted to litres of paint used, up to 30                                                                                                                        |
| litres. Find the rule for this mapping.                                                                                                                              |
| <br>How many litres of paint are needed for                                                                                                                          |
| <br>the following area?                                                                                                                                              |
| (a) $10.5 \text{m}^2$ (b) $12 \text{m}^2$                                                                                                                            |
| <br>(a) 1516111 (b) 1 <b>2</b> 111                                                                                                                                   |
| <br>4. A man wants to make a square                                                                                                                                  |
| <br>enclosure in one of his fields. Make a                                                                                                                           |
| table for the mapping of the area of field                                                                                                                           |
| <br>to the length of fencing for 80m, 100m,                                                                                                                          |
| <br>120m, up to 200m. find the rule for this                                                                                                                         |
| mapping. What length of fencing is                                                                                                                                   |
| <br>required for the following areas of field?                                                                                                                       |
| <br>(i) 100m <sup>2</sup> (iii) 169m <sup>2</sup>                                                                                                                    |
| (ii) $121m^2$ (iv) $225m^2$                                                                                                                                          |
|                                                                                                                                                                      |
| <br>5. The basic cost of establishing a local                                                                                                                        |
| <br>soap factory is GH¢10,000.00. The cost                                                                                                                           |
| of producing one bar of the soap is GH¢100.00. Make a table of the mapping                                                                                           |
| <br>for the number of soap bars (0, 5, 10,                                                                                                                           |
| <br>15, 20) and the total cost.                                                                                                                                      |
| (a) What is the rule for this mapping?                                                                                                                               |
| <br>(b) Find the number of soap bars that                                                                                                                            |
| <br>can be made for a total production                                                                                                                               |
| <br>cost of                                                                                                                                                          |
| <br>(i) GH¢50,000.00                                                                                                                                                 |
| <br>(ii) GH¢75,000.00                                                                                                                                                |
|                                                                                                                                                                      |

(c) A bar of soap from this factory is sold for GH¢204.00. How many bars of soap should the factory produce to cover its cost?



- (i) What is the domain of the mapping?
- (ii) What is the range of the mapping?
- (iii) What is the rule of the mapping?

#### **FUNCTIONS**

Let X and Y be non-empty sets. A function from X to Y is a rule which associates with each element of X a unique element of Y. X is called the domain of the function and Y the co-domain of the function. In this definition the sets X and Y may be equal.

If we denote the function by f we write,  $f: X \to Y$  to indicate that f is a function from X to Y. If  $x \in X$ , we denote the unique member of Y which f associates with x; f(x) is called the image of x under f, or the value of f at x. We can represent the mapping diagrammatically as follows:



The subset of Y consisting of the members of Y that are images under f of element of X, i.e the subset  $\{y \in Y: y = f(x) \text{ for some } x \in X\}$  is called the image of X under f, or simply, the image of f. It is often denoted by f(x). The word range is often used instead of image.

2. Which of the following mappings determine a function?







| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | 1 |

| <br>Exercise 13 Date:  1. Which of the following mappings is/are functions(s)?                          |
|---------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} (i) \\ a \\ b \end{array} $ $ \begin{array}{c} x \\ y \\ z \end{array} $             |
| <br>(ii)                                                                                                |
| $\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$                        |
| $ \begin{array}{c} a \\ b \\ \end{array} $                                                              |
| <br>2.                                                                                                  |
| X                                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                   |
| $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$                                                             |
| <br>(i) What is the domain of the mapping?                                                              |
| <ul><li>(ii) What is the range of the mapping?</li><li>(iii) What is the rule of the mapping?</li></ul> |
| <br>                                                                                                    |
|                                                                                                         |
| <br>                                                                                                    |

| <del></del> |                                                                        |
|-------------|------------------------------------------------------------------------|
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
| <del></del> |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             |                                                                        |
|             | Example                                                                |
|             | A function f is defined by f: $x \rightarrow 2x + 3$ , find            |
|             | the image of                                                           |
|             | (i) 2 (ii) $-\frac{1}{2}$ under f.                                     |
|             | 2                                                                      |
|             | 0.1.4                                                                  |
|             | Solution                                                               |
|             | Given, $f(x) = 2x + 3$                                                 |
| <del></del> | (i) When $x = 2$ , $f(2) = 2(2) + 3 = 7$                               |
|             | (ii) When $x = -\frac{1}{2}$ , $f(-\frac{1}{2}) = 2(-\frac{1}{2}) + 3$ |
|             | = -1 + 3                                                               |
|             | = 2                                                                    |

#### Example

A function g:  $x \to \frac{3x+1}{x-1}$ ,  $x \ne 1$ .

Is defined on the set  $T = \{-1,0,2,3,4,5\}$ 

- (a) Find the range of g under the set T given
- (b) Find the value of x for which the function has an image of 5

#### Solution...

Given g: 
$$x \to \frac{3x+1}{x-1}$$
,  $x \ne 1$ 

I.e. 
$$g(x) = \frac{3x+1}{x-1}$$

$$T = \{-1,0,2,3,4,5\}$$

When 
$$x = -1$$
,  $g(-1) = \frac{3(-1)+1}{-1-1} = 1$ 

$$x = 0$$
,  $g(0) = \frac{3(0) + 1}{0 - 1} = -1$ 

$$x = 2$$
,  $g(2) = \frac{3(2) + 1}{2 - 1} = 7$ 

T = {-1,0,2,3,4,5}  
When 
$$x = -1$$
,  $g(-1) = \frac{3(-1)+1}{-1-1} = 1$   
 $x = 0$ ,  $g(0) = \frac{3(0)+1}{0-1} = -1$   
 $x = 2$ ,  $g(2) = \frac{3(2)+1}{2-1} = 7$   
 $x = 3$ ,  $g(3) = \frac{3(3)+1}{3-1} = \frac{10}{2} = 5$   
 $x = 4$   $g(4) = \frac{3(4)+1}{4-1} = \frac{13}{3}$   
 $x = 5$ ,  $g(5) = \frac{3(5)+1}{5-1} = \frac{16}{4} = 4$ 

$$x = 4$$
  $g(4) = \frac{3(4) + 1}{4 - 1} = \frac{13}{3}$ 

$$x = 5$$
,  $g(5) = \frac{3(5) + 1}{5 - 1} = \frac{16}{4} = 4$ 

∴ The image under T is given as

$$\left\{1, -1, 7, 5, \frac{13}{3}, 4\right\}$$

(b) Given image 
$$= 5$$

$$\Rightarrow g(x) = 5$$

$$\Rightarrow \frac{3x+1}{x-1} = 5$$

$$3x+1 = 5(x-1)$$

$$2x = 6$$

$$x = 3$$

Hence the value of *x* that has an image of 5 is 3.

#### Exercise 14 Date:.....

- 1. If  $g(x) = \frac{x-2}{x+3}$ ,  $x \in \mathbb{R}$  and  $x \neq -3$ .
  - Find
  - (i)
- g(-2) (iii)  $g\left(-\frac{3}{4}\right)$ 
  - (ii)
- 2. The function f is defined as

$$f: x \longrightarrow 3x^2 - 5x$$
.

- (i) Evaluate f(-3)
- Find the value of *x* for which (ii)  $f(x) = -\frac{4}{3}$

| 1 |   |
|---|---|
|   |   |
|   |   |
|   | _ |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |

| <del></del> | Exercise 15 Date:                                             |
|-------------|---------------------------------------------------------------|
|             | 1. If $f(x) = x^3 - 3x^2 + 6x - 4$ and                        |
|             | g(x) = 2x - 1, find                                           |
|             | (i) $f(-1)$ (ii) $g(-2)$ (iii) $f(\sqrt{2})$                  |
|             |                                                               |
|             | 2. The function f and g are defined as:                       |
|             | for $x \ge 2$ $x^2$ and $x \ge 1$ $x \ne 1$                   |
|             | f: $x \to 2 - x^2$ and g: $x \to \frac{1}{x-1}$ , $x \ne 1$ . |
|             | Evaluate                                                      |
|             | (i) $g\left(-\frac{1}{4}\right)$ (ii) $\frac{f(2)}{g(3)}$     |
|             | g(3)                                                          |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
| <del></del> |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             | ·                                                             |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |
|             |                                                               |

| Exercise 16 Date:                                                                     |  |
|---------------------------------------------------------------------------------------|--|
| 4 C                                                                                   |  |
| 1. Given that $f(x) = 2x - 1$ and $g(x) = x^2 + 1$ .                                  |  |
| (i) Find $f(1+x)$                                                                     |  |
|                                                                                       |  |
| (ii) Find the range of value of $x$                                                   |  |
| defined for which $f(x) < -3$ .                                                       |  |
| (iii) Simplify $f(x) - g(x)$ .                                                        |  |
| (iii) Simplify $I(x) - g(x)$ .                                                        |  |
|                                                                                       |  |
|                                                                                       |  |
| 2. Two functions f and g are defined as                                               |  |
| 2                                                                                     |  |
| f: $x \rightarrow \frac{x^2}{4} - 9$ and g: $x \rightarrow \frac{1}{2x} (x \neq 0)$ . |  |
|                                                                                       |  |
| (i) Evaluate $f(4) + g\left(-\frac{1}{3}\right)$                                      |  |
|                                                                                       |  |
| (ii) If $f \times g = 2$ , solve for $x$ .                                            |  |
| ()                                                                                    |  |

| Exercise 17 Date:                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. The functions f and g are defined as follows:<br>f: $x \to \frac{x-1}{2}$ and g: $x \to 3x + 1$<br>(i) Evaluate $f\left(-\frac{1}{2}\right) + 1$<br>(ii) Solve $f(x) = g(-2)$ |
| 3. The functions f and g are defined as f: $x \to x - 2$ and g: $x \to 2x^2 - 1$ . Solve:  (i) $f(x) = g\left(-\frac{1}{2}\right)$ (ii) $f(x) + g(x) = 0$ .                      |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | I |

| Exe | ercise 18 Date:                                                                               |  |
|-----|-----------------------------------------------------------------------------------------------|--|
| 1.  | Two functions f and g are defined by                                                          |  |
|     | f: $x \rightarrow 2x^2 - 1$ and g: $x \rightarrow 3x + 2$ ,                                   |  |
|     | where $x$ is a real number.                                                                   |  |
|     | (i) If $f(x-1) - 7 = 0$ , find the values                                                     |  |
|     |                                                                                               |  |
|     | of $x$ .                                                                                      |  |
|     | (ii) Evaluate $\frac{f(-\frac{1}{2}) \cdot g(3)}{f(4) - g(5)}$ .                              |  |
|     | f(4) - g(5)                                                                                   |  |
|     |                                                                                               |  |
| 2.  | <i>B</i> is the set {0, 1, 2, 3, 4, 5} and a function                                         |  |
|     | g: $B \to \mathbb{Z}$ is defined by $g(x) = 5x - 4$ .                                         |  |
|     | Find the image of g.                                                                          |  |
|     |                                                                                               |  |
| 3.  | A is the set $\{-3, -2, -1, 0, 1, 2, 3\}$ and B                                               |  |
|     | is the interval $\{x \in \mathbb{R}: -3 \le x \le 3\}$ . If                                   |  |
|     | $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ defined by                                    |  |
|     | $f(x) = 2x - 1$ and $g(x) = \frac{x}{3} + 1$ . Find the                                       |  |
|     | 3                                                                                             |  |
|     | image in each case.                                                                           |  |
| 4.  | If $f(x) = 2x - 1$ , $g(x) = x^2 + 1$ and                                                     |  |
|     | $h(x) = 2^x.$                                                                                 |  |
|     | (a) Find the value of                                                                         |  |
|     | (i) $f\left(-\frac{1}{2}\right)$ (iii) $h(-3)$                                                |  |
|     | (ii) $g(-5)$                                                                                  |  |
|     | (n) $g(-3)$                                                                                   |  |
|     | (b) $g(x) = g$ find $x$ in terms of $g$                                                       |  |
|     | (b) $g(x) = z$ , find $x$ in terms of $z$ .                                                   |  |
|     | (a) $\Gamma' = 1 \cdot (f(x)) \cdot (x \cdot (x \cdot x) \cdot (x \cdot x) \cdot (x \cdot x)$ |  |
|     | (c) Find $g(f(x))$ , in its simplest form.                                                    |  |
|     | (1) 1 ( )                                                                                     |  |
|     | (d) $h(x) = 512$ , find the value of $x$                                                      |  |
|     |                                                                                               |  |
|     | (e) solve the equation $2f(x) + g(x) = 0$ ,                                                   |  |
|     | giving your answer correct to two                                                             |  |
|     | decimal places.                                                                               |  |
|     |                                                                                               |  |
|     | (f) Sketch the graph of                                                                       |  |
|     | (i) $y = f(x)$ (ii) $y = g(x)$                                                                |  |
|     |                                                                                               |  |
| 5.  | Given that f: $x \rightarrow 2x^2 - 8x + 5$ and                                               |  |
|     | $g: x \longrightarrow x - 2$ .                                                                |  |
|     | (i) Calculate $f(-3)$                                                                         |  |
|     | (ii) Find the values of <i>x</i> such that                                                    |  |
|     | f(x) = g(x).                                                                                  |  |
|     |                                                                                               |  |
|     |                                                                                               |  |
|     |                                                                                               |  |
|     |                                                                                               |  |
|     |                                                                                               |  |
|     |                                                                                               |  |
|     |                                                                                               |  |
|     |                                                                                               |  |
|     |                                                                                               |  |
|     |                                                                                               |  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |

| Example Given $g: x \to ax^2 + b$ , where $a$ and $b$ are constants. If $g(2) = 3$ and $g(-3) = 13$ . Find the value of $a$ and $b$ and hence evaluate $g(-1)$ . |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solution<br>$g: x \rightarrow ax^2 + b \Rightarrow g(x) = ax^2 + b$<br>g(2) = 3<br>$\Rightarrow a(2)^2 + b = 3$<br>$\therefore 4a + b = 3$ (1)                   |
| Also,<br>g(-3) = 13<br>$a(-3)^2 + b = 13$<br>9a + b = 13(2)                                                                                                      |
| <br>$(2) - (1)$ : $5a = 10$ $\therefore a = 2$ .                                                                                                                 |
| Put $a = 2$ into (1)<br>4(2) + b = 3<br>b = -5                                                                                                                   |
| Hence, $a = 2, b = -5$ .<br>$\therefore g(x) = 2x^2 - 5$ $g(-1) = 2(-1)^2 - 5$ $= -3$                                                                            |
| Exercise 19 Date:                                                                                                                                                |
| 2. If g: $x \to \frac{9}{mx+n}$ , where m and n are constants, g(2) = 3 and g(-4) = -1. Find the values of m and n.                                              |
| <br>                                                                                                                                                             |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
| <br>                                                                                                                                                             |
| <br>                                                                                                                                                             |
|                                                                                                                                                                  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exe | ercise 20 Date:                                                                                                                       |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.  | If $f: x \to m + nx$ , where $m$ and $n$ are constants. Given also that $f(0) = 1$ and $f(4) = 21$ , find the values of $m$ and $n$ . |  |
|     |                                                                                                                                       |  |
| 2.  | A function f is defined by the set $\mathbb{R}$ , of real number by f: $x \to px^2 + qx + 2$ ,                                        |  |
|     | where $p$ and $q$ are constants. If                                                                                                   |  |
|     | f(-2) = 0 and $f(1) = 3$ . Find $f(-4)$ .                                                                                             |  |
| 3.  | If $f(x) = ax^2 + bx + c$ , where $a, b$ and $c$                                                                                      |  |
|     | are constants. If $f(0) = 5$ .<br>(i) What is the value of $c$ ?                                                                      |  |
|     | (ii) Given also that $f(1) = 6$ and                                                                                                   |  |
|     | f(-1) = 8, find the values of $a$ and $b$                                                                                             |  |
|     | (iii) Evaluate f(3).                                                                                                                  |  |
| 4.  |                                                                                                                                       |  |
|     | (a) A function is defined by f: $x \to \frac{x+1}{x-3}$ ,                                                                             |  |
|     | $x \neq 3$ . Find the objects which have                                                                                              |  |
|     | images $-4$ , 0, 1 and 4.<br>(b) If $f(x) = 5x^2 + 2x + 1$ , find                                                                     |  |
|     | (i) $f(2)$ (iii) $f(1-a)$<br>(ii) $f(-2)$ (iv) $f(x-1)$                                                                               |  |
|     | (ii) $I(-2)$ (iv) $I(x-1)$                                                                                                            |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |
|     |                                                                                                                                       |  |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | I |

#### Exercise 21

Date:.....

- 1. A function is defined by f:  $x \rightarrow 3x 2$ on the domain  $\{-2, -1, 0, 1, 2, 3\}$ .
  - $\alpha$ ) Find the images of the following elements in the domain.
    - (a) -2 (b) 0
- (c) 3
- $\beta$ ) What elements of the domain satisfy these equations?
  - (a) f(x) = 1
  - (b) f(x) = 7
  - (c) f(x) = -5
- 2. A function is defined by  $f: x \to \frac{1}{2}x$  on the domain  $\{-2, -1, 0, 1, 2, 3\}$ .
  - $\alpha$ ) Find the following elements of the range.
    - (a) f(-1)
- (c) f(1)
- (b) f(3)
- $\beta$ ) What elements of the domain correspond to these images?
  - (a) 0
- (b) 1
- (c)  $1\frac{1}{2}$
- 3. A function g is defined by g:  $x \to \frac{1}{x}$  on the domain  $\{-2, -1, 0, 1, 2, 3\}$ .
  - $\alpha$ ) Find the images of the following elements of the domain
    - (a) -2
- (b) 3
- (c) 1
- $\beta$ ) Is the function g defined for all real numbers?
- $\gamma$ ) For what real number would g be undefined?
- 4. A function g is defined by  $g: x \to \frac{1}{2-x}$ on the domain  $\{-3, -2, 1, 3, 5\}$ .
  - $\alpha$ ) Find the images of the following elements of the domain.
  - $\beta$ ) Is the function g defined for all real numbers?
  - $\gamma$ ) For what real number would g be undefined?

- (a) Find the range of the function  $f: x \to 1 - \frac{1}{1-x}$  for the domain  $A = \left\{-2, -1, 0, \frac{1}{2}, 2, 3\right\}.$
- (b) A function f is defined by

$$f(x) = \begin{cases} x, & \text{when } x \in \mathbb{Z} \\ \frac{1}{x}, & \text{when } x \notin \mathbb{Z} \end{cases}$$

Evaluate the following

- (i) f(1)
- (ii) f(0)
- (iii)  $f\left(\frac{1}{2}\right)$
- 6. Given that  $f(x) = \frac{ax+4}{ax+3b}$ , find the values of aand b if f(2) = 0 and f(3) = f(1).
- 7. Under the mapping  $f(x) = ax^2 bx + 2$ , the image of 3 is 14 and the image of -2 is 24, find
  - the values of a and b (i)
  - (ii) the elements whose image is 4

| _     |
|-------|
|       |
| <br>_ |
|       |
|       |
| _     |
|       |
| _     |
|       |
| _     |
|       |
| <br>_ |
|       |
| _     |
|       |
| <br>_ |
|       |
| <br>_ |
|       |
| _     |
|       |
|       |
| _     |
|       |
| _     |
|       |
| <br>_ |
|       |
| _     |
|       |
| <br>_ |
|       |
|       |

|             | · <u></u> |
|-------------|-----------|
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
| <del></del> |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
| <del></del> |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |

### **CO – ORDINATE GEOMETRY**

### GRADIENT (SLOPE) OF A STRAIGHT LINE

The gradient of a line is a measure of its steepness. The steeper the line, the larger the gradient (slope).



The gradient of the line joining  $A(x_1, y_1)$  to  $B(x_2, y_2)$  is:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

### Example 1

Find the gradient of the line joining A(3, -2) and B(-5, -8).

#### Solution...

The gradient of AB,  $m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$ 

$$= \frac{-8 - (-2)}{-5 - 3}$$
$$= \frac{-6}{-8} = \frac{3}{4}$$

#### Exercise 1 Date:.....

Find the gradient of the line joining of the following pairs of points.

- (i) (1,3) and (2,6)
- (ii) (6,3) and (7,4)
- (iii) (-2,5) and (-3,6)
- (iv) (3, 2) and (-5, 4)
- (v) (-2,-1) and (-6,-5)

| (, | , ( - | , -) | ( 0, 0) |      |
|----|-------|------|---------|------|
|    |       |      |         |      |
|    |       |      |         | <br> |
|    |       |      |         | <br> |
|    |       |      |         | <br> |
|    |       |      |         | <br> |
|    |       |      |         |      |
|    |       |      |         |      |
|    |       |      |         |      |
|    |       |      |         | <br> |

| , |  |
|---|--|
|   |  |

### Exercise 2 Date:.....

1.

- (i) Find the gradient of the line joining the points (2, -3) and (-2, 5).
- (ii) Find the gradient of the straight line which passes through the points E(5,0) and F(0,2).
- 2. The gradient of the line passing through the points M(6,7) and N(y,8) is  $\frac{1}{3}$ . Find the value of y.
- 3. The gradient of the line passing through the points P(x, 5) and R(4, -7) is  $\frac{1}{2}$ . Find the value of x.

| <del></del> |                                                                                 |
|-------------|---------------------------------------------------------------------------------|
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
| <del></del> |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             | <del></del>                                                                     |
|             |                                                                                 |
|             |                                                                                 |
|             |                                                                                 |
|             | THE EQUATION OF A STRAIGHT LINE WITH                                            |
|             | GRADIENT M                                                                      |
|             | CASE 1: $v = mx + c$                                                            |
|             | CASE 1: $y = mx + c$                                                            |
|             | Where $m$ is the gradient and $c$ is a constant.                                |
|             |                                                                                 |
|             | Example 2  Find the equation of a straight line which                           |
|             | Find the equation of a straight line which passes through the point (2, 4) with |
|             | gradient $\frac{1}{3}$ .                                                        |
|             | 3.                                                                              |
|             | Solution                                                                        |
|             | y = mx + c                                                                      |
|             | Given $m=\frac{1}{3}$ ,                                                         |
|             | J                                                                               |

$$\therefore y = \frac{1}{3}x + c$$

$$(x,y) = (2,4)$$

$$\Rightarrow 4 = \frac{1}{3} \times 2 + c$$

$$\Rightarrow 12 = 2 + 3c$$

$$\Rightarrow 10 = 3c$$

$$\therefore c = \frac{10}{3}$$

$$\therefore y = \frac{1}{3}x + \frac{10}{3}$$

### Example 3

Find the equation of the line which passes through the points (-2, 7) and (2, -3).

#### Solution...

$$y = mx + c$$

$$m = \frac{-3-7}{2-(-2)} = \frac{-10}{4} = -\frac{5}{2}$$
$$y = -\frac{5}{2}x + c$$

Equation at (-2,7)

$$\Rightarrow 7 = -\frac{5}{2}(-2) + c$$

$$\Rightarrow$$
 7 = 5 +  $\alpha$ 

$$\therefore y = -\frac{5}{2}x + 2$$

#### **CASE II:**

$$y - y_1 = m(x - x_1)$$

Where, (x, y) is a fixed point and m is the gradient.

#### Example 4

Find the equation of a straight line which passes through the point (2, 4) with gradient  $\frac{1}{3}$ .

#### Solution...

$$y - y_1 = m(x - x_1)$$

$$m = \frac{1}{3}, (x_1, y_1) = (2, 4)$$

$$\Rightarrow y - 4 = \frac{1}{3}(x - 2)$$

$$\Rightarrow y - 4 = \frac{1}{3}x - \frac{2}{3}$$

$$\Rightarrow y = \frac{1}{3}x - \frac{2}{3} + 4$$

$$\therefore y = \frac{1}{3}x + \frac{10}{3}$$

#### Example 5

Find the equation of the line which passes through the points (-2, 7) and (2, -3).

#### Solution...

$$y - y_1 = m(x - x_1)$$

$$m = \frac{-3-7}{2-(-2)} = -\frac{10}{4} = -\frac{5}{2}$$

Let 
$$(x_1, y_1) = (2, -3)$$
  
 $\Rightarrow y - (-3) = -\frac{5}{2}(x - 2)$   
 $\Rightarrow y + 3 = -\frac{5}{2}x + 5$   
 $\therefore y = -\frac{5}{2} + 2$ 

#### Exercise 3

Find the gradient of each of the following straight lines.

Date:.....

1. 
$$y = 3x - 4$$

2. 
$$y = 4 - x$$

3. 
$$2y + 3x + 7 = 0$$

4. 
$$8y + 4x - 3 = 0$$

5. 
$$\frac{y}{2} + \frac{x}{3} = 7$$

| <br> |
|------|
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |

| <del></del>                                        |  |
|----------------------------------------------------|--|
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
| Exercise 4 Date:                                   |  |
| Find the equation of the straight line that        |  |
| has the Callestine and anti-                       |  |
| has the following properties.                      |  |
| (1) Gradient 3 and pass through (4, 3)             |  |
| (2) Gradient -5 and passes through the             |  |
|                                                    |  |
| point (-1, -2)                                     |  |
| (3) Gradient $-\frac{1}{3}$ and passes through the |  |
|                                                    |  |
| point $(3, -2)$                                    |  |
| (4) (2) 1                                          |  |
| (4) Gradient $\frac{2}{3}$ and passes through the  |  |
| origin.                                            |  |
| origin.                                            |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
| <del></del>                                        |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |

| <br> |
|------|
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |

#### Exercise 5 Date:....

- 1. Find the equations of the straight lines joining each of the following pairs of points.
  - (i) (5,6) and (-1,-3)
  - (-2, -4) and (-3, -8)(ii)
  - (2,-6) and (0,-3)(iii)
  - (0,-1) and  $\left(\frac{2}{3},0\right)$ (iv)
- 2. Find the equation of the straight line which intercepts -3 on the x – axis and -5 on the y – axis.
- 3. The diagram shows a straight line MN. Find the equation of *MN*.



| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             | , |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
| <del></del> |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |

### THE ONLY WAY OF LEARNING MATHEMATICS IS BY SOULING YOUR HANDS

| SOLVING MATHEMA                                                                                                                                                             | ATICAL QUESTIONS. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <b>DISTANCE BETWEEN TWO POINTS</b> The general formula for the distance between any two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is:                                          |                   |
| $ AB  = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                                                                                                                               |                   |
| Example 6 Find the distance between the points $A(2,7)$ and $B(4,10)$ .                                                                                                     |                   |
| Solution<br>$ AB  = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$<br>$ AB  = \sqrt{(4 - 2)^2 + (10 - 7)^2}$<br>$ AB  = \sqrt{13}$ units                                             |                   |
| Example 7 Find the length between the points $P(-3, -5)$ and $Q(2, -4)$ .                                                                                                   |                   |
| Solution $ PQ  = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $ PQ  = \sqrt{(2 - (-3))^2 + (-4 - (-5))^2}$ $ PQ  = \sqrt{(2 + 3)^2 + (-4 + 5)^2}$ $ PQ  = \sqrt{26} \text{ units}$ |                   |
| Exercise 6 Date:                                                                                                                                                            | Exercise 7 Date:  |
|                                                                                                                                                                             |                   |

| <br> | <br> |
|------|------|
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> |      |

#### Exercise 8 Date:.....

- 1. Given that the distance between  $A(\alpha, 4)$ and B(2,3) is equal to the distance between C(3,-1) and D(-2,4), calculate the possible values of  $\alpha$ .
- 2. If the distance between points P(-1,4)and O(2, k) is  $\sqrt{58}$ . Find the possible values of the constant k.
- 3. Find k given that P(-1,1) and Q(k,-2)are 5 units apart.
- 4. The distance between P(x,7) and Q(6, 19) is 13 units. Find the values of x
- 5. The distance between the points  $(\alpha, 0)$ and  $(0, \alpha)$  is equal to the distance between the points (1, 2) and (-1, 3). Find the value of  $\alpha$ .

### MIDPOINT OF TWO POINTS

The co – ordinates of the midpoint of  $A(x_1, y_1)$  and  $B(x_2, y_2)$ :

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

### Example 8

Find the coordinates of the midpoint of the following points.

- (i) A(1,2) and B(4,6)
- P(-1, -4) and Q(-3, -2)(ii)

#### Solution...

- Midpt of  $AB = \left(\frac{1+4}{2}, \frac{2+6}{2}\right) = \left(\frac{5}{2}, 4\right)$ Midpt of  $PQ = \left(\frac{-1+(-3)}{2}, \frac{-4+(-2)}{2}\right)$

### Example 9

The points of A and B are (x, -1) and (-5, y). If the midpoint of AB is  $\left(-\frac{1}{2}, 2\frac{1}{2}\right)$ . Find the values of *x* and *y*.

#### Solution...

$$\left(-\frac{1}{2}, 2\frac{1}{2}\right) = \left(\frac{x-5}{2}, \frac{-1+y}{2}\right)$$

$$\Rightarrow -\frac{1}{2} = \frac{x-5}{2}$$

$$\Rightarrow -1 = x - 5$$

$$\therefore x = 4$$

Also,  

$$\Rightarrow \frac{5}{2} = \frac{-1+y}{2}$$

$$\Rightarrow 5 = -1+y$$

$$\therefore y = 6$$

$$\therefore x = 4, y = 6$$

#### Exercise 9 Date:.....

Find the co - ordinates of the midpoint of the following pairs of points:

- 1. (1, 4) and (3, 8)
- 2. (2,6) and (3,7)
- 3. (-2, 5) and (9, -4)
- 4. (-4, -3) and (-6, -7)
- 5. (7,-5) and (-2,-3)

| (a) Find the co – ordinates of the midpoint of the line segment joining the points.  (i) (8, 1) and (2, 5)  (ii) (5, -3) and (-1, 0)  (iii) (-2, 4) and (4, -2)  (b) If $P(x, -4)$ is the midpoint of point $Q(4, -1)$ and $R(x, y)$ . Find the coordinates of $R$ .  (c) The points $P$ and $Q$ are $(x, -3)$ and $(-7, y)$ . If the midpoint of $PQ$ is $\left(-\frac{1}{3}, 3\frac{1}{3}\right)$ . Find the values of $x$ and $y$ . |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <br>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <br>                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| <del></del> |
|-------------|
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |

### THE POINT OF INTERSECTION OF TWO LINES

If two lines  $l_1$  and  $l_2$  meet at a point A, then A is called a point of intersection.



To find the points of intersection (A), we have to solve the equation simultaneously.

### Example 10

The lines 2y + 3x - 16 = 0 and 7y - 2x - 6 = 0 intersect at point *P*. Find the co – ordinates of *P*.

#### Solution...

Since the two lines intersect, we solve them simultaneously.

$$2y + 3x - 16 = 0$$
  
 $2y + 3x = -16$ ....(1)

$$7y - 2x - 6 = 0$$
  
$$7y - 2x = 6.....(2)$$

$$2 \times (1) + 3 \times (2)$$
  
$$\Rightarrow 25y = 50 \qquad \therefore y = 2$$

Put 
$$y = 2$$
 into (1)  
2(2) +  $3x = 16$   
 $3x = 12$ 

$$\therefore x = 4$$

$$\therefore P(x,y) = P(4,2)$$

### Exercise 11 Date:.....

Find the coordinates of the points of intersection of each of the following pairs of straight lines.

1. 
$$2x + 5y + 6 = 0$$
 and  $3x + 4y - 2 = 0$ 

2. 
$$3x + 2y - 2 = 0$$
 and  $5x + 3y - 8 = 0$ 

3. 
$$y-3 = -2x$$
 and  $y-8 = 3x$ 

4. 
$$3y - 5x = 1$$
 and  $y + 2x = 7$ 

|             | <del></del> |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             | -,          |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
| <del></del> |             |
|             |             |
|             |             |
|             |             |

| PARALLEL LINES  Two lines $l_1$ with gradient $m_1$ and $l_2$ with gradient $m_2$ are said to be parallel if and only if their gradients are the same.  i.e. $m_1 = m_2$ Example 11  If the line $y = 2kx + 5$ is parallel to $y = 10x - 6$ , find the value of $k$ .  Solution $y = 2kx + 5$ , $\therefore m_1 = 2k$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $y = 10x - 6$ , $\therefore m_2 = 10$<br>Since the lines are parallel<br>$\Rightarrow m_1 = m_2$<br>$\Rightarrow 2k = 10$<br>$\therefore k = 5$                                                                                                                                                                       |
| <ol> <li>Exercise 12 Date:</li></ol>                                                                                                                                                                                                                                                                                  |
| <ul> <li>4. If the line 3x - 4y - 12 = 0 and px + 6y - 9 = 0 are parallel, find the value of the constant p.</li> </ul>                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                       |

| <br>                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
| <br>                                                                                                                          |
|                                                                                                                               |
| <br>                                                                                                                          |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
| <br>                                                                                                                          |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
| <br>                                                                                                                          |
|                                                                                                                               |
| <br>                                                                                                                          |
|                                                                                                                               |
| <br>                                                                                                                          |
|                                                                                                                               |
|                                                                                                                               |
| Exercise 13 Date:                                                                                                             |
|                                                                                                                               |
| 1. Write the equation of the line parallel to                                                                                 |
| the straight line $y = \frac{3}{2}x + 5$ and passing                                                                          |
| the straight line $y = \frac{1}{2}x + 5$ and passing                                                                          |
| through the point (2,3).                                                                                                      |
| <br>till ough the point (2, 3).                                                                                               |
|                                                                                                                               |
|                                                                                                                               |
| <br>2 Find the equation of the line which                                                                                     |
| <br>2. Find the equation of the line which                                                                                    |
| passes through the point $L(1,3)$ and is                                                                                      |
| <br>passes through the point $L(1,3)$ and is                                                                                  |
| <br>passes through the point $L(1,3)$ and is                                                                                  |
| 2. Find the equation of the line which passes through the point $L(1,3)$ and is parallel to the line $y = \frac{2}{3}x + 1$ . |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |
| passes through the point $L(1,3)$ and is                                                                                      |

| <br>                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                     |
| <br>                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
| <br>                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                     |
| <br>                                                                                                                                                                                                                                                                                                                                |
| <br>                                                                                                                                                                                                                                                                                                                                |
| <br>                                                                                                                                                                                                                                                                                                                                |
| Exercise 14 Date:                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                     |
| 1. Find the equation of the straight line                                                                                                                                                                                                                                                                                           |
| <ol> <li>Find the equation of the straight line<br/>that has the following properties.</li> </ol>                                                                                                                                                                                                                                   |
| <ol> <li>Find the equation of the straight line<br/>that has the following properties.</li> </ol>                                                                                                                                                                                                                                   |
| <ol> <li>Find the equation of the straight line that has the following properties.</li> <li>(i) Pass through (2, 3) and is parallel</li> </ol>                                                                                                                                                                                      |
| <ol> <li>Find the equation of the straight line that has the following properties.</li> <li>(i) Pass through (2, 3) and is parallel to y = 2x + 3.</li> </ol>                                                                                                                                                                       |
| <ol> <li>Find the equation of the straight line that has the following properties.</li> <li>(i) Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>(ii) Passes through (-3, -2) and is</li> </ol>                                                                                                                          |
| <ol> <li>Find the equation of the straight line that has the following properties.</li> <li>(i) Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>(ii) Passes through (-3, -2) and is</li> </ol>                                                                                                                          |
| <ol> <li>Find the equation of the straight line that has the following properties.</li> <li>(i) Pass through (2, 3) and is parallel to y = 2x + 3.</li> </ol>                                                                                                                                                                       |
| <ol> <li>Find the equation of the straight line that has the following properties.</li> <li>(i) Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>(ii) Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol>                                                                                                  |
| <ol> <li>Find the equation of the straight line that has the following properties.</li> <li>(i) Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>(ii) Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol>                                                                                                  |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing</li> </ol>                                        |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing</li> </ol>                                        |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing</li> </ol>                                        |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |
| <ol> <li>Find the equation of the straight line that has the following properties.         <ol> <li>Pass through (2, 3) and is parallel to y = 2x + 3.</li> <li>Passes through (-3, -2) and is parallel to y = 1 - 3x.</li> </ol> </li> <li>Find the equation of the line passing through the point (-½, 2) and parallel</li> </ol> |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | , |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |

### PERPENDICULAR LINES

Two non – vertical lines  $l_1$  and  $l_2$  with (slopes) gradients  $m_1$  and  $m_2$  are perpendicular if and only if:

$$m_1 \times m_2 = -1$$

### Example 12

The line y = 2x + 1 perpendicular to the line 3y + bx - 4 = 0, find the value of b.

#### Solution...

$$y = 2x + 1 \qquad \therefore m_1 = 2$$

$$3y + bx - 4 = 0$$

$$3y = -bx - 4$$

$$y = -\frac{b}{3}x - 4 \qquad \therefore m_2 = -\frac{b}{3}$$

Since the lines are perpendicular,

$$\Rightarrow m_1 \times m_2 = 1$$

$$2 \times -\frac{b}{3} = -1$$

$$-2b = -3$$

$$b = \frac{3}{2}$$

### Exercise 15 Date:.....

- 1. Find the equation of the line which is perpendicular to the line y = 2x 1 and passes through the point (2,5).
- 2. Find the equation of the straight line that has the following properties.
  - (i) Passes through (-1, 4) and is perpendicular to y = -5x + 3.
  - (ii) Passes through  $\left(3, -\frac{2}{3}\right)$  and is perpendicular to 3y 2x = 6.
  - (iii) Passes through  $\left(-\frac{2}{3}, \frac{1}{5}\right)$  and is perpendicular to 2y + 9x = 7.

| <br>                                                                |
|---------------------------------------------------------------------|
| <br>                                                                |
| <br>                                                                |
|                                                                     |
| <br>                                                                |
|                                                                     |
| <br>Exercise 16 Date:                                               |
| from the mid – point of the line joining                            |
| the points $B(4, -2)$ and $C(6, 6)$ .                               |
| 2. The line with equation $y = 2x - k$                              |
| passes through the point (4, 0). Work                               |
| out the value of $k$ .                                              |
| <br>3. If the point $(p, 0)$ lies on the line                       |
| 2y + 3x - 9 = 0, find the value of $p$ .                            |
| 4. Find the point of intersection of $y = \frac{3}{x}$              |
| <br>and $y = (x + 2)$ .                                             |
| <br>5.                                                              |
| <br>(a) The line $y = 4$ meets the line                             |
| <br>2x + y = 8 at the point A. Find the                             |
| co – ordinates of $A$ .<br>(b) The line $3x + y = 18$ meets the     |
| <br>x —axis at the point $B$ . Find the co –                        |
| <br>ordinates of <i>B</i> .                                         |
|                                                                     |
| <br><ul><li>(c)</li><li>(i) Find co – ordinates of the</li></ul>    |
| <br>midpoint of the line joining $A$                                |
| <br>and $B$ .                                                       |
| <br>(ii) Find the equation of the line through <i>M</i> parallel to |
| 3x + y = 18                                                         |

- 6. Find the perimeter of the triangle whose vertices are P(6,4), Q(-3,1) and R(9,-5).
- 7. The lines 4x + 6y 5 = 0 and 2x + 4y 3 = 0 intersect at N. Find the equation of the line through N perpendicular to the line x + 2y = 0.
- 8. The lines 3x + 2y 1 = 0, 4x + 5y + 3 = 0 intersect at M. Find the (a) Co ordinates of M
  - (b) Equation of the line through M parallel to the line 3x 5y + 7 = 0
- 9. Find the equation of the line passing through the midpoint of the line joining P(5,1) and Q(-1,-5) and perpendicular to PQ.
- 10. A straight line joins the point (3, 2) to the point of intersection of the line x y + 4 = 0 and y 2x 5 = 0. Find the equation.

### Exercise 17 Date:.....

1. Find the equation of the straight line that is perpendicular to the line  $y = \frac{1}{2}x + 1$  and passes through the point (1,3).



Line *L* is drawn on the grid.

- (i) Find the gradient of line *L*
- (ii) Find the equation of line L in the form y = mx + c
- (iii) Line M is parallel to L. Line M passes through the point (0,3). Write down the equation of line M.

- 3. The lines whose equations are 3x + y = 2 and 4x 2y = 6 intersect at (x, y). Find the point of intersection.
- 4. The line 4x + ky = 20 passes through the points A(8, -4) and B(b, 2b), where k and b are constants.
  - (i) Find the values of *k*
  - (ii) Find the co ordinates of the midpoint of *AB*
- 5. A straight line parallel to 2x + 3y = 6, passes through the point (-1, 2). Find the equation of the line.
- 6. The line joining the points A(6,2) and B(-2,6) is perpendicular to the line L. If L passes through the point (0,2), find the equation of the line L.
- 7. (a) The line joining (3, a) to (7, -4a) is parallel to the joining (-1, -3) to (3, 7). Find a.
  - (b) The line joining (-2,1) to (6,4) is parallel to the line joining (-a,5) to (4,a). Find a.
- 8. The points (2,5), (3,3) and (k,1) all lie in a straight line.
  - (a) Find the value of *k*.
  - (b) Find the equation of the line.



- (a) The line y = 4 meets the line 2x + y = 8 at the point A. Find the co ordinates of A.
- (b) The line 3x + y = 18 meets the x —axis at the point B. Find the co ordinates of B.

- (c)
- (i) Find the co ordinates of the midpoint *M* of the line joining *A* to *B*.
- (ii) Find the equation of the line through M parallel to 3x + y = 18.
- 10.
- (a) Find the co ordinates of the midpoint of the line joining A(-8,3) and B(-2,-3).
- (b) The line y = 4x + c passes through (2, 6). Find the value of c.
- (c) The lines 5x = 4y + 10 and 2y = kx 4 are parallel. Find the value of k.
- 11.



The lines *AB* and *CD* intersects at *B*.

- (a) Find the co ordinates of the midpoint of *AB*.
- (b) Find the equation of the line *CB*.
- 12. The equation of a straight line can be written in the form 3x + 2y 8 = 0.
  - (a) Rearrange the equation to make *y* the subject.
  - (b) Write down the gradient of the line.
  - (c) Write down the co ordinates of the point where the line crosses the  $\nu$  –axis.
- 13.
- (a) A straight line passes through two points with co ordinates (6,8) and (0,5). Work out the equation of the line.

- (b) Find the length of the straight line from Q(-8,1) to R(4,6).
- 14. Line *A* has equation y = 5x 4. Line *B* has equation 3x + 2y = 18.
  - (a) Find the gradient of the line.
    - (i) *A*
- (ii) *B*
- (b) Write down the co − ordinates of the point where line *A* crosses the *x* −axis.
- (c) Find the equation of the line perpendicular to line A which passes through the point (10, 9). Give your answer in the form y = mx + c.
- 15. Three points have co ordinates A(-8,6), B(4,2) and C(-1,7). The line through C perpendicular to AB intersects AB at the point P.
  - (i) Find the equation of the line *AB*
  - (ii) Find the equation of the line *CP*
  - (iii) Show that *P* is the midpoint of *AB*
  - (iv) Calculate the length of *CP*
  - (v) Hence find the area of the triangle *ABC*
- 16. The co ordinates of three points are A(-2,6), B(6,0) and C(p,0).
  - (i) Find the co ordinates of *M*, the midpoint of *AB*.
  - (ii) Given that *CM* is perpendicular to *AB*, find the value of the constant *n*.
  - (iii) Find angle *MCB*.

1.

The angles on a straight line add up to  $180^{\circ}$ .



i.e.  $a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}$ .

### Example 1

Find the value of x.



### Solution

$$40^{\circ} + x^{\circ} + 70^{\circ} = 180^{\circ}$$
  
 $x + 110^{\circ} = 180^{\circ}$   
 $x = 180^{\circ} - 110^{\circ}$   
 $x = 70^{\circ}$ 

### Exercise 1

Date:....

Find the value of x in the following.

1.



2.



3.



4.





| <br> |
|------|
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |

| <br>  |
|-------|
|       |
|       |
|       |
|       |
| <br>  |
|       |
| <br>  |
|       |
| <br>  |
| <br>  |
|       |
| <br>  |
|       |
| <br>  |
|       |
| _     |
|       |
|       |
| <br>  |
|       |
| <br>— |
|       |
|       |
| <br>  |
|       |
| <br>  |
|       |
| <br>  |
|       |
|       |
| <br>  |
|       |
| <br>  |
|       |
|       |
|       |
|       |
| <br>  |
|       |
| <br>  |
|       |
|       |
| <br>  |
| <br>_ |
| <br>  |
|       |
| <br>  |
|       |
| <br>_ |
| <br>  |
|       |
| <br>  |
|       |
|       |
| <br>  |
| <br>  |
| <br>  |
|       |
|       |
|       |
|       |

Vertically opposite angles are equal.

When two straight lines intersect at a point, the angles formed on the opposite sides of the point of intersection are called **vertically opposite angles**.



Angle c =Angle dAngle a =Angle b

### Example 2



What is the value of m in the diagram?

#### Solution

Vertically opposite angles are equal  $\Rightarrow 4m - 15^{\circ} = m + 75^{\circ}$ 

$$4m - m = 75^{\circ} + 15^{\circ}$$
$$3m = 90^{\circ}$$
$$m = 30^{\circ}$$

Exercise 2 Date:.....

Find the values of the letters in the following diagrams.



2.



3.



4.





3.

The angles of a point add up to 360°



$$\hat{a} + \hat{b} + \hat{c} = 360^{\circ}$$

### Example 3

Find the value of *x* in the diagram below.



### Solution

Angles of a point add up to 360°

$$x + 10^{\circ} + 4x - 30^{\circ} + 2x + 30^{\circ} = 360^{\circ}$$

$$7x + 10 = 360^{\circ}$$

$$7x = 350^{\circ}$$

$$\therefore x = 50^{\circ}$$

Exercise 3 Date:.....

Find the values of the letters marked in the diagrams.

1.



2.



3.



4.



5.





| <br> |
|------|
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
|      |

#### **TYPES OF ANGLES**

A full turn is made up to  $360^{\circ}$  $\therefore$  a quarter turn has  $\frac{360^{\circ}}{4}$  or  $90^{\circ}$ . This is called a **right – angle** and it is represented as



• An angle which is less than 90° is called an acute angle.



• An angle which is greater than 180° is called **an obtuse angle**.



• an angle that is greater than 180° but less than 360° is called a **reflex angle**.



### Exercise 4

Date:....

Which of the shapes below

- i. have acute angle?
- ii. have right angles?
- iii. Have reflex angles?
- iv. are symmetrical

| a |   | b | 7 | $\int_{c}$ |           |
|---|---|---|---|------------|-----------|
|   | d |   |   | e          | $\supset$ |
|   |   |   |   |            |           |
|   |   |   |   |            |           |
|   |   |   |   |            |           |

### ANGLE PROPERTIES OF A TRIANGLE

A triangle is a closed figure formed by three line segments. There are various types of triangles depending on the angles or the lengths of the sides of the triangle.

The sum of the angles of a triangle is  $180^{\circ}\,$ 



$$\hat{a} + \hat{b} + \hat{c} = 180^{\circ}$$

| _                                                                       | MATICAL QUESTIONS. |
|-------------------------------------------------------------------------|--------------------|
| Exercise 5 Date:  Find the value of <i>x</i> in the following diagrams. |                    |
| 1. × × × × × × × × × × × × × × × × × × ×                                |                    |
| 2. x° 60°                                                               |                    |
| 3. 130° (x°)                                                            |                    |
| 4.                                                                      |                    |
| 5. 48°                                                                  |                    |
|                                                                         |                    |

The exterior angle of a triangle is equal to the sum of the two interior opposite angles.



$$a + b = e$$

### Example 4

The diagram is a triangle *ABC* with the side *AC* produced to *D*. Find

- (i) the value of x.
- (ii) angle ACB.



#### Solution

(i) The exterior angle of a triangle is equal to the sum of the two interior opposite angles.

$$\Rightarrow x + 17 + 2x + 7 = 9x$$

$$3x + 24 = 9x$$

$$24 = 9x - 3x$$

$$24 = 6x$$

$$\therefore x = 4^{\circ}$$

(ii) Angles on a straight line add up to  $180^{\circ}$   $\Rightarrow \angle ABC + 9x = 140^{\circ}$ 

But 
$$x = 4^{\circ}$$
  
 $\Rightarrow \angle ABC + 9(4) = 180^{\circ}$   
 $\angle ABC = 180^{\circ} - 36^{\circ}$   
 $= 144^{\circ}$ 

Date:....

Find x, y and z in the following diagrams.

1



2.



3.





| 5.                         |  |
|----------------------------|--|
|                            |  |
| y                          |  |
| $42^{\circ}$               |  |
|                            |  |
|                            |  |
| 25°                        |  |
|                            |  |
| Z <b>y</b>                 |  |
| /                          |  |
| 6.                         |  |
|                            |  |
| y                          |  |
| <u>(58</u> )               |  |
|                            |  |
| $\sqrt{33}$ ° $\sqrt{x}$ ° |  |
| $z^{\circ}$                |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |

# Exercise 7 Date:..... Find the value of *x* in the following diagrams.

1.



2.



3.



4.



5.



| <br> |
|------|
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |

273

| <br> |  |
|------|--|
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

2.



In the diagram, |AB| = |AC|, angle  $ADC = 30^{\circ}$  and angle  $ACD = 7x - 25^{\circ}$ , find

- (i) the value of x.
- (ii) angle DAC.

| (iii) ang | <br> | <br> |   |
|-----------|------|------|---|
|           |      |      |   |
|           |      |      |   |
|           |      |      |   |
|           |      |      | _ |
|           |      |      | _ |
|           |      |      | _ |
|           |      | <br> | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           |      | <br> | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           |      |      | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           | <br> | <br> | _ |
|           |      | <br> | _ |
|           |      |      |   |
|           |      |      | _ |

### Exercise 8

### Date:....

1. Consider the following diagram and answer these questions.



- i) Find  $\angle MNP$ .
- ii) What is the supplement of 142°?
- iii) Write down the value of a + b + c.

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

ANGLES FORMED WITHIN PARALLEL LINES



- (i)  $\hat{a} = \hat{d}$  (vertically opposite angles)
- (ii)  $\hat{a} = \hat{c}$  (corresponding angles)
- (iii)  $\hat{c} = \hat{d}$  (alternate angles)  $\hat{e} = \hat{d}$ , (alternate angles)
- (iv)  $\hat{b} + \hat{c} = 180, \hat{d} + \hat{e} = 180^{\circ}$ (co – interior angles)

i.e. corresponding angles are equal alternate angles are equal co – interior angles add up to 180°.

Example 5



In the diagram above, AC is parallel to DG angle  $BFG = 118^{\circ}$  and angle  $ABE = 83^{\circ}$ . Find the value of

- (i) angle CBF.
- (ii) x.

#### Solution

(i)  $\angle CBF$  and  $\angle BFG$  are co – interior angles which add up to 180°.

$$\Rightarrow \angle CBF + \angle BFG = 180^{\circ}$$

$$\angle CBF + 118^{\circ} = 180^{\circ}$$

$$\angle CBF = 180^{\circ} - 118^{\circ}$$

$$\angle CBF = 62^{\circ}$$

(ii) Alternate angles are the same

$$\Rightarrow \angle ABF = \angle BFG$$
$$\Rightarrow 83^{\circ} + x = 118^{\circ}$$

$$x = 118^{\circ} - 83^{\circ}$$

 $x = 35^{\circ}$ 

Exercise 9

Date:....



### **NOT DRAWN TO SCALE**

In the diagram,  $\overline{AD}$  is parallel  $\overline{EG}$ , angle  $CFG = 40^{\circ}$  and triangle BCF is isosceles. Find the value of:

- (i) angle CBF;
- (ii) angle *DCF*
- (iii) x

|             | Exercise 10 Date:                                            |
|-------------|--------------------------------------------------------------|
|             | In the diagram <i>PADQ</i> and <i>RBCS</i> are               |
|             | parallel lines, $ BD  =  DC $ , angle                        |
|             | $ADB = 65^{\circ}$ and angle $ABR = 50^{\circ}$ .            |
|             | (i) Calculate angle BDC                                      |
|             | (ii) Calculate angle ABD                                     |
|             | (iii) Calculate angle BAD                                    |
|             | (iv) What type of triangle is triangle <i>ABD</i> ?          |
|             |                                                              |
|             | A D                                                          |
|             | $P \xrightarrow{A} \qquad D \qquad \longrightarrow \qquad Q$ |
|             | \ 03 \/ \                                                    |
|             | \ \ \                                                        |
|             | \                                                            |
|             | 50%                                                          |
|             | $D \longrightarrow C$                                        |
|             | B $C$                                                        |
|             | NOT DRAWN TO SCALE                                           |
| <del></del> | NOI DRAWN IO SCALE                                           |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
| <del></del> |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             | <del></del>                                                  |
|             |                                                              |
| <del></del> |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |
|             |                                                              |

### Exercise 11 Date:.....

- (a) In the diagram,  $\overline{AB}$  is parallel to  $\overline{CD}$ . Find the value of :
  - (i) *x*

(ii) *y* 



**NOT DRAWN TO SCALE** 

(b) Find the value of the letters marked in the diagram.



**NOT DRAWN TO SCALE** 

| <br> | _ |
|------|---|
|      |   |
|      |   |
| <br> |   |
|      |   |
|      |   |
| <br> |   |
|      |   |
| <br> | — |
|      |   |
|      |   |
| <br> |   |
|      |   |
|      |   |
| <br> |   |
|      |   |
|      |   |
| <br> |   |
|      |   |
|      |   |
|      |   |
|      | _ |
| <br> |   |

### Exercise 12 Date:.....

For each of the following diagrams, write down an equation involving the given variable and solve for it.





3.



4.



5.



6.



7.



8.



9.



10.





| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |

| <del></del>                                                          |                                                                                                                          |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      |                                                                                                                          |
|                                                                      | <del></del>                                                                                                              |
| EXERCISE 13 Date:                                                    |                                                                                                                          |
| $L_{lack}$                                                           |                                                                                                                          |
| $\sqrt{x}$                                                           |                                                                                                                          |
| K                                                                    |                                                                                                                          |
| M                                                                    |                                                                                                                          |
|                                                                      |                                                                                                                          |
| 130° F                                                               |                                                                                                                          |
| $\int \frac{f(x)}{H} \frac{1}{G} \frac{\partial f(x)}{\partial x} F$ |                                                                                                                          |
| ) H U                                                                | EXERCISE 14 Date:                                                                                                        |
| In the diagram, $\angle KLM = x$ , $\angle LMK = y$ ,                |                                                                                                                          |
| $\angle KJH = r$ and $\angle KGF = 130^{\circ}$ . If $2x = r = y$ ,  | C                                                                                                                        |
| find the value of $x$ .                                              |                                                                                                                          |
| <del></del>                                                          | $\sqrt{36}$ $\sqrt{j}$                                                                                                   |
|                                                                      | $B \nearrow G$                                                                                                           |
|                                                                      | $\xrightarrow{B}$ $\xrightarrow{G}$ $\xrightarrow{D}$                                                                    |
|                                                                      | i $(2i)$                                                                                                                 |
|                                                                      | $A \longrightarrow F$                                                                                                    |
|                                                                      | NOT DRAWN TO SCALE                                                                                                       |
|                                                                      | HOT DIGMAN TO DESTRE                                                                                                     |
|                                                                      | In the diagram, $ACE$ is a triangle, $CF$ is a                                                                           |
|                                                                      | straight line, $BD//AE$ and $ BC  =  CG $ . If                                                                           |
|                                                                      | $\angle BCG = 36^{\circ}$ , $\angle BAF = i$ , $\angle GCD = j$ and $\angle DEF = 2i$ , find the values of $i$ and $i$ . |
|                                                                      | $L = \angle D E F = \angle I$ , und the values of I and I.                                                               |

|             | EXERCISE 15 Date: In a quadrilateral <i>KLMN</i> , <b>not drawn to scale</b> , |
|-------------|--------------------------------------------------------------------------------|
|             | $LM = LN = LK$ , $\angle KLM = 140^{\circ}$ and                                |
|             | $\angle LKN = 40^{\circ}$ .                                                    |
|             | $K$ $\nwarrow$                                                                 |
|             | 400                                                                            |
|             | +0                                                                             |
|             | N                                                                              |
|             |                                                                                |
|             | M                                                                              |
|             | NOT DRAWN TO SCALE                                                             |
|             | Giving the reson for each step of yor answer,                                  |
|             | calculate the size of                                                          |
|             | (i) $\angle LNK$ (ii) $\angle NLM$ (iii) $\angle KNM$                          |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
| <del></del> |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |
|             |                                                                                |



NOT DRAWN TO SCALE

Calculate, giving reasons for your answer, the value of

- (i) *x*
- (ii) y
- (iii) z



#### **NOT DRAWN TO SCALE**

Determine, giving a reason for each step of your answer, the measure of

- (i) Angle RQT
- (ii) Angle PRT
- (iii) Angle *SPT*, given that angle  $SRT = 145^{\circ}$  and angle  $PSR = 100^{\circ}$ .

| <br> |
|------|
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |



### NOT DRAWN TO SCALE

Calculate the size of the angle marked (i)  $x^{\circ}$ (ii) *y*°



### **NOT DRAWN TO SCALE**

Determine, giving reasons for EACH of your answers, the value of

- (i) *x*
- (ii) y
- (iii) w

| 2. An angle is three times its supplement. Find the size of the angle. |
|------------------------------------------------------------------------|
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |

### Exercise 20

Date:.....

For each of the following figures, write down an equation involving the given variable and solve it.

1.



2.



3.



4.





| <br> | <br> |
|------|------|
|      |      |
|      |      |
| <br> |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |

### Exercise 21 Date:.....

1. In the diagram below, |PQ| = |PR| = |RS| and  $|RS| = 35^\circ$ . Find  $|RS| = 35^\circ$ .



- 2. In  $\triangle PQR$ , T is a point on QR such that  $< QPT = 39^{\circ}$  and  $< PTR = 83^{\circ}$ , calculate < PQT.
- 3. In the diagram AC is a straight line. |BC| = |BD|,  $< BCD = 50^{\circ}$  and  $< BAD = 55^{\circ}$ . Find < BDA.



4. In the diagram, AD is perpendicular to BC. AG is the bisector of AG.  $ABC = 63^{\circ}$ ,  $AG = 12^{\circ}$ .



Show that triangle *AGC* is isosceles.

### Exercise 22 Date:.....

1. In the diagram, *ZM* is a straight line. Calculate the value of *x*.



2. In the diagram, calculate the value of x.



3.



In the diagram, the value of  $x + y = 220^{\circ}$ . Find the value of n.

4. In the diagram, PQR is a straight line.  $(m+n) = 120^{\circ}$  and  $(n+r) = 100^{\circ}$ . Find (m+r).



5.



In the diagram,  $\overline{SR}$  is parallel to  $\overline{UW}$ .  $\langle WVT = x^{\circ}, \langle VUT = y^{\circ}, \langle RSV = 45^{\circ} \rangle$ and  $< VTU = 20^{\circ}$ .

- (i) Find the value of *x*

| (ii) Calculate the value of y |  |  |
|-------------------------------|--|--|
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |

| <br> |
|------|
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

### Example



In the diagram,  $\overline{PQ}//\overline{RS}$ . Find the value of z.

#### Solution...

Draw a line parallel to *PQ* and *RS* at the point *T* as shown in the diagram below.



$$< PAT + < QAT = 180^{\circ}$$
  
 $136^{\circ} + < QAT = 180^{\circ}$   
 $< QAT = 180^{\circ} - 136^{\circ}$   
 $< QAT = 44^{\circ}$ 

Alternate angles are equal

$$\Rightarrow$$
 < VTB =< TBS = 41°  
< QAT =< VTA = 44°

$$z = < VTA + < VTB$$
$$z = 44^{\circ} + 41^{\circ}$$

### $z=85^{\circ}$

### Exercise 23

#### Date:....

1. In the figure below  $\overline{UV}$  is parallel to  $\overline{XY}$ , angle  $UVW = 64^{\circ}$  and angle  $xyw = 78^{\circ}$ . Find the value of the angle marked a.



2.



Find the value of the angle marked y in the diagram above.

3.



What is the value of *x* in the diagram above?

4.



Find the value of x in the diagram above.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      | <br> |  |
|      |      |  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

288

| Error | anian | 21  |
|-------|-------|-----|
| r.xei | ጎግና은  | 7.4 |

Date:....

1. In the diagram below  $\overline{AB}$  is parallel to  $\overline{CD}$ . Find the value of x + y + z.



2. In the diagram, QR//TP and  $< WPT = 88^{\circ}$ . Find the value of x.



3. Calculate the value of *y* in the diagram.



4.



In the diagram, WY//PR,  $< WXO = 50^{\circ}$ , reflex  $< XOQ = 280^{\circ}$  and < OQR = v. Find the value of v.

| <br> |
|------|
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

| <br>            |
|-----------------|
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |
| <br><del></del> |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |

Exercise 25 Date:.....

Find the size of the angles marked with a letter.

1.



2.



Find the size of reflex < WQS.

3.



In the diagram,  $< PQU = 36^{\circ}$ ,  $< QRT = 29^{\circ}$ , PQ//RS and UQ//RT. Find < PQR.

4.



In the diagram, MN//ST, NP//QT and  $< STQ = 70^{\circ}$ . Find x.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
| <br> | <br> |  |
| <br> |      |  |
| <br> |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

Exercise 26

Date:....

1. In the diagram below, PQT is an isosceles triangle; |PQ| = |QT|,  $< SRQ = 75^{\circ}$ ,  $< QPT = 25^{\circ}$  and PQR is a straight line. Find < RST.



2. In the diagram below, ML//PQ and NP//QR. If  $< LMN = 40^{\circ}$  and  $< MNP = 55^{\circ}$ , find < PQR.



3.



The diagram, AOB is a straight line,  $< AOC = 3(x + y)^{\circ}, < COB = 45^{\circ},$   $< AOD = (5x + y)^{\circ} \text{ and } < DOB = y^{\circ}.$ Find the value of x and y.

| 4. | In the triangle <i>PQR</i> , <i>M</i> and <i>N</i> are points |
|----|---------------------------------------------------------------|
|    | on the sides <i>PQ</i> and <i>PR</i> respectively             |
|    | such that $MN$ is parallel to $QR$ . If                       |
|    | $< PRQ = 75^{\circ},  PN  =  QN $ and                         |
|    | $< PNQ = 125^{\circ}$ . Determine                             |
|    | (i) $< NOR$ (ii) $< NPM$                                      |
|    |                                                               |

| < PNQ (i) $< I$ | = 125°<br>NOR | . Detern<br>(ii) | ine < NPM |      |
|-----------------|---------------|------------------|-----------|------|
| <br>            |               |                  |           |      |
|                 |               |                  |           | <br> |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
| <br>            |               |                  |           |      |
| <br>            |               |                  |           | <br> |
| <br>            |               |                  |           | <br> |
| <br>            |               |                  |           |      |
| <br>            |               |                  |           | <br> |
|                 |               |                  |           |      |
|                 |               |                  |           | <br> |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           | <br> |
| <br>            |               |                  |           |      |
| <br>            |               |                  |           |      |
|                 |               |                  |           | <br> |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
| <br>            |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           |      |
|                 |               |                  |           | <br> |
|                 |               |                  |           |      |

## Exercise 27 Date:.....

1. In the diagram below, *BA* is parallel to *DE*. Find the value of *x*.



- 2. ABCD is a trapezium with AB parallel to DC and |AD| = |AB|. If  $< BAD = 106^{\circ}$ , find < BDC.
- 3. In the diagram,  $< PQR = 125^{\circ}$ , < QRS = r,  $< RST = 80^{\circ}$  and  $< STU = 44^{\circ}$ . Calculate the value of r.



4.



In the diagram, PQRST is a quadrilateral. PT//QS,  $< PTO = 42^\circ$ ,  $< TSQ = 38^\circ$ , and  $< QSR = 30^\circ$ . If < QTS = x and < PQT = y, find the value of (i) x (ii) y

| <br> |
|------|
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |

| <del></del> |
|-------------|
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |

### **SPECIAL TRIANGLES**

### 1. Equilateral Triangle



An equilateral triangle has;

- (i) all interior angles equal (60° each)
- (ii) all sides are of the same length.
- (iii) three lines of symmetry.

### 2. Isosceles Triangle



An isosceles triangle has

- (i) two angles are equal
- (ii) two sides are of the same length
- (iii) two of its interior angles are equal

### 3. Right - Angled Triangle



Right – angled triangle has:

- (i) one angle is 90°.
- (ii) all sides may be different lengths.
- (iii) all angles may be different.
- (iv) may have 0 or 1 line of symmetry.

### 4. Scalene Triangle



Scalene triangle has:

- (i) all angles different.
- (ii) all sides (lengths) different.
- (iii) no lines of symmetry.

### **QUADRILATERALS**

A quadrilateral is a polygon with four sides. It has four vertices and two diagonals.

For any quadrilateral, the sum of the interior angles is 360°.



$$r + x + y + z = 360^{\circ}$$

### SPECIAL PROPERTIES OF QUADRILATERALS

### 1. Square



A square has

- (i) all angles equal to 90°.
- (ii) all sides equal.
- (iii) opposite side parallel.
- (iv) diagonals equal in length and bisect each other.
- (v) diagonal cross at right angles.

(vi) diagonals bisect corner angles.

### 2. Rectangle



A rectangle has

- (i) all angles equal to 90°.
- (ii) opposite sides equal.
- (iii) opposite sides parallel.
- (iv) diagonals equal in length and bisect each other.
- (v) two lines of symmetry.

### 3. Parallelogram



A parallelogram has:

- (i) opposite angles equal.
- (ii) opposite sides equal.
- (iii) opposite sides parallel.
- (iv) diagonals bisect each other.
- (v) no lines of symmetry.

### 4. Rhombus



A rhombus has:

- (i) all sides equal.
- (ii) opposite sides parallel.

- (iii) opposite angles equal.
- (iv) diagonals bisect each other.
- (v) diagonals crossing at right angles.
- (vi) diagonals bisecting corner angles.
- (vii) two lines of symmetry.

### 5. Kite



### A kite has

- (i) one pair of opposite angles equal.
- (ii) two pairs of adjacent sides equal.
- (iii) diagonals crossing at right angles.
- (iv) only one diagonal bisected.
- (v) only one pair of opposite angles bisected.
- (vi) one of the diagonals as line of symmetry.

### 6. Trapezium



### A trapezium has:

- (i) one pair of opposite sides parallel.
- (ii) all sides may be different lengths.
- (iii) all angles may be different sizes.
- (iv) no lines of symmetry.

## Exercise 28 Date:.....

1. Find the value of x.



2. Find x in the quadrilateral below.



3. Find the value of *a*, *b*, *c*, *d* and *e* in the diagram below.



NOT DRAWN TO SCALE

|             | Exercise 29 Date:                                                                               |
|-------------|-------------------------------------------------------------------------------------------------|
|             | 1. Calculate the value of <i>y</i> from the                                                     |
|             | diagram.                                                                                        |
|             |                                                                                                 |
|             |                                                                                                 |
|             | /105°                                                                                           |
|             |                                                                                                 |
|             | <b>→</b>                                                                                        |
|             | 123° y                                                                                          |
|             | $\bigvee$                                                                                       |
|             | V                                                                                               |
|             | 2.                                                                                              |
| <del></del> | V                                                                                               |
|             | $K \longrightarrow L$                                                                           |
|             |                                                                                                 |
|             | P                                                                                               |
|             | 45°                                                                                             |
|             | $M \xrightarrow{43} N$                                                                          |
|             | In the diagram $VI //MN < IVD = 20^{\circ}$                                                     |
|             | In the diagram, $KL//MN$ , $< LKP = 30^{\circ}$ and $< NMP = 45^{\circ}$ . Find the size of the |
|             | reflex $< KPM$ .                                                                                |
|             | 1011011 (1111111                                                                                |
|             | 3. In the diagram, $TG$ is parallel to $JE$ ,                                                   |
|             | $\langle JEF = 120^{\circ} \text{ and } \langle FHG = 130^{\circ}, \text{ find } \rangle$       |
|             | the angle marked $t$ .                                                                          |
|             | F                                                                                               |
|             | $\wedge$                                                                                        |
|             | $\langle t \rangle$                                                                             |
|             |                                                                                                 |
|             | 120°                                                                                            |
|             | $\int \frac{1}{E}$                                                                              |
|             | \130°                                                                                           |
|             |                                                                                                 |
| <del></del> | T $H$ $G$                                                                                       |

4. In the diagram,  $\langle STQ = m, \\ \langle TUQ = 80^{\circ}, \langle UPQ = r, \langle PQU = n \\ \text{and } \langle RQT = 88^{\circ}. \text{ Find the value of } \\ (m+n).$ 



5. In the diagram, AB//CD and BC//FE.  $< CDE = 75^{\circ}$  and  $< DEF = 26^{\circ}$ . Find the angles marked x and y.



| -, |
|----|
|    |
|    |
|    |
|    |
|    |
|    |

| <br> |
|------|
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |

Exercise 30 Date:.....

1. In the diagram, ST//PQ, reflex angle  $SRQ = 198^{\circ}$  and  $< RQP = 72^{\circ}$ .



- 2. Two isosceles triangles PQR and PQS are drawn on opposite sides of a common base PQ. If  $< PQR = 66^{\circ}$  and  $< PSQ = 109^{\circ}$ , calculate the value of < RQS.
- 3. In the diagram,  $\overline{EF}$  is parallel to  $\overline{GH}$ . If  $< AEF = 3x^{\circ}, < ABC = 120^{\circ}$  and  $< CHG = 7x^{\circ}$ , find the value of < GHB.



4.



In the diagram, MNPS is a quadrilateral. A line is drawn through N to cut SP at Q. Angle  $MNQ=132^{\circ}$ , angle SMN is twice angle MSQ and angle NPQ is twice angle QNP. If NP bisects the acute angle at N, find

- (i) angle *SQN*,
- (ii) angle MSQ
- 5. In the diagram  $\overline{PQ}$  is parallel to  $\overline{SR}$ , and  $\overline{QR}$  is parallel to  $\overline{PT}$ . |PQ| = |QR|, angle  $PRS = 63^{\circ}$  and angle  $RST = 100^{\circ}$ . Find the value of
  - (i) *x*
- (ii) y

(iii) z



6. Find the value of *a*, *b*, *c*, *d* and *e* in the diagram below.



NOT DRAWN TO SCALE

7.



In the diagram,  $\overline{AM}$  and  $\overline{AN}$  are straight lines. ABC is an isosceles triangle,  $< BAC = 80^{\circ}$ , the bisectors of < MBC and < NCB meet at K. Calculate < BKC.

8. PQR is a triangle in which |PQ| = |PR| and S is a point on PR such that |QS| = |QR|. If  $< PQS = 30^\circ$ , calculate < QPR.

| <br>  |
|-------|
|       |
|       |
| <br>  |
|       |
| <br>  |
|       |
| _     |
| <br>  |
|       |
| <br>  |
|       |
| <br>_ |
| <br>  |
|       |
| <br>  |
|       |
| <br>  |
| <br>  |
| <br>_ |
| <br>  |
|       |
|       |
|       |
| <br>_ |
| <br>  |
|       |
| <br>  |
|       |
|       |
|       |
| _     |
| <br>  |
|       |
| <br>  |
|       |
| _     |
| <br>  |
|       |
|       |
|       |
| _     |
| <br>_ |
| <br>_ |
| <br>  |
|       |
| <br>  |
|       |
| _     |
| <br>  |
|       |
| <br>  |
|       |
| _     |
| <br>  |
| <br>_ |
| <br>  |
|       |
| —     |

| <br> |
|------|
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |

Exercise 31

Date:....

1.



Find the value of *x*.

2.



Find the value of *x*.

3. Find the values of *x* and *y* in the figure below.



4.



ABCD is a rhombus. Calculate < BAC.

5. Find the angle marked *x* and *y* giving reasons for each step.



6.



In the diagram,  $< TPQ = 32^{\circ}$  and |PQ| = |QT| = |TR|. Calculate < TRK.

7.



Find the value of *x* in the diagram above.

8. In the diagram,  $< PQT = 200^{\circ}$ ,  $< TQR = 32^{\circ}$  and < QRS = x. Find the value of x.



9.



In the diagram, MNOP is a rhombus and PQNO is a kite, angle  $PMN = 76^{\circ}$  and angle  $PQN = 120^{\circ}$ . Calculate the size of angle QPO.

10.



In the diagram,  $\overline{MN}/\overline{ST}$ ,  $< MNR = 230^{\circ}$  and  $< TSR = 76^{\circ}$ . Find the value of < NRS.

11.



In the diagram above,  $\overline{ST} = \overline{SR} = \overline{TQ}$ , angle  $RPT = 44^{\circ}$ , angle RTQ = y, and angle SRT = angle SQT = x. Calculate:

- (i) the values of x and y
- (ii) the value of angle RUQ
- (iii) describe  $\Delta PST$

12. Find the size of the angles marked with a letter.













(vi)





## Exercise 32 Date:.....

- In the triangle PQR, M and N are points on the sides PQ and PR respectively such that MN is parallel to QR. If < PRQ = 75°, |PN| = |QN| and < PNQ = 125°, determine</li>
   (i) < NOR</li>
   (ii) < NPM</li>
- 2. Prove that the sum of the angles of a triangle is two right angles. Hence or otherwise show that the exterior angle of a triangle equals the sum of the two interior opposite angles.
- 3. Prove that parallelogram on the same base and between that same parallel are equal in area.
- 4. PQRS is a parallelogram, *T* is any point on *PQ* between *P* and *Q*, prove that triangle QTS + triangle QTR = triangle STR.
- 5. If in the parallelogram PQRS, |PQ| = 8 cm, |PS| = 5 cm and  $< PQR = 30^{\circ}$ . Find the
  - (i) distance between the parallel PQ and SR
  - (ii) area of the parallelogram.

## PROPERTIES OF POLYGONS

A polygon is any closed figure bounded by straight lines or edges. A polygon with all its sides equal is referred to as a regular polygon. All the interior angles of a regular polygon are of the same size.

Any polygon that does not have all congruent sides and angles is known as an irregular polygon.

Irregular polygons can still be pentagons, hexagons and nonagons, but they do not have congruent angles or equal sides.

### **Examples of Polygons**

Quadrilateral - 4 sides

Pentagon – 5 sides

Hexagon - 6 sides

Heptagon – 7 sides

Octagon - 8 sides

Nonagon – 9 sides

Decagon - 10 sides

#### Exercise 1 Date:....

Complete the table below.

| _               | Nun   | nber of                               |                                      |
|-----------------|-------|---------------------------------------|--------------------------------------|
| Polygon         | Sides | Triangles<br>drawn from<br>one vertex | Sum of interior angles               |
| Triangle        | 3     | 1                                     | $1 \times 180^{\circ} = 180^{\circ}$ |
| Quadrilateral   | 4     | 2                                     | $2 \times 180^{\circ} = 360^{\circ}$ |
| Pentagon        | 5     |                                       |                                      |
| Hexagon         |       |                                       |                                      |
| Heptagon        |       |                                       |                                      |
| Octagon         |       |                                       |                                      |
| Nonagon         |       |                                       |                                      |
| Decagon         |       |                                       |                                      |
| Undecagon       |       |                                       |                                      |
| Dodecagon       |       |                                       |                                      |
| n sided polygon | n     |                                       |                                      |

The sum of the interior angles of a regular polygon is given by:

$$S = (n-2) \times 180^{\circ}$$

Where n – number of sides of the polygon and (n-2) – number of triangles drawn from only one vertex.

### Example 1

Find the sum of the interior angles of a regular polygon with 7 sides.

#### Solution...

Sum of interior angles:

$$S = (n-2) \times 180^{\circ}$$

Given, 
$$n = 7$$

$$S = (7 - 2) \times 180^{\circ}$$
  
=  $5 \times 180^{\circ} = 900^{\circ}$ 

### Exercise 1

Date:.... Find the sum of the interior angles of a regular polygon with

| l. | 5 sides  | 5. | 15 sides |
|----|----------|----|----------|
| 2. | 12 sides | 6. | 18 sides |
| 3. | 8 sides  | 7. | 20 sides |

| 4. <i>(</i> | 13 sides | 8. | 25 sides |
|-------------|----------|----|----------|
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |
|             |          |    |          |

| Example 2                                                                |  |
|--------------------------------------------------------------------------|--|
| The sum of the interior angles of a regular                              |  |
| polygon is 1080°. Find the number of sides                               |  |
| of the regular polygon.                                                  |  |
|                                                                          |  |
| Solution                                                                 |  |
| $S = (n-2) \times 180^{\circ}$                                           |  |
| Given, $S = 1080^{\circ}$ , $n = ?$                                      |  |
| $\Rightarrow 1080^{\circ} = (n-2) \times 180^{\circ}$                    |  |
| $1080^{\circ} = 180^{\circ}n - 360^{\circ}$                              |  |
| $1080^{\circ} + 360^{\circ} = 180^{\circ}n$                              |  |
| $180^{\circ}n = 1440^{\circ}$                                            |  |
| $n = \frac{1440^{\circ}}{180^{\circ}} = 8$                               |  |
| ∴ The number of sides of a regular polygon                               |  |
| is 8.                                                                    |  |
|                                                                          |  |
| Exercise 2 Date:                                                         |  |
| 1. The sum of the interior angles of a                                   |  |
| regular polygon is 720°. Find the                                        |  |
| number of sides of the regular polygon.                                  |  |
|                                                                          |  |
| 2. The sum of the interior angles of a                                   |  |
| regular polygon is 900°. Find the                                        |  |
| number of sides of the regular polygon.                                  |  |
| 2. The gum of the interior angles of a                                   |  |
| 3. The sum of the interior angles of a convex polygon is 1260°. How many |  |
| sides has the polygon?                                                   |  |
| sides has the polygon:                                                   |  |
| 4. The sum of the interior angles of an                                  |  |
| n —sided polygon is 3420°. Find the                                      |  |
| value of $n$ .                                                           |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
| <del></del>                                                              |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |
|                                                                          |  |

| Calastan                                                                                                   |                                                                                   |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Solution $S = (n-2) \times 180^{\circ}$                                                                    |                                                                                   |
| Pentagon, so n = 5                                                                                         |                                                                                   |
| t changes, so $t = 0$                                                                                      |                                                                                   |
| $\Rightarrow 126^{\circ} + 114^{\circ} + y + 92^{\circ} + 83^{\circ} = (5 - 2) \times 180^{\circ}$         |                                                                                   |
| $y + 415^{\circ} = 3 \times 180^{\circ}$<br>$y + 415^{\circ} = 540^{\circ}$                                |                                                                                   |
| $y = 540^{\circ} - 415^{\circ}$                                                                            |                                                                                   |
| $\therefore y = 125^{\circ}$                                                                               |                                                                                   |
| ,                                                                                                          |                                                                                   |
| Exercise 3 Date:                                                                                           |                                                                                   |
| 1. If the interior angles of a pentagon are                                                                |                                                                                   |
| $2x^{\circ}$ , $x^{\circ}$ , $2x^{\circ}$ , $3x^{\circ}$ and $x^{\circ}$ , find the value of $x^{\circ}$ . |                                                                                   |
| λ.                                                                                                         |                                                                                   |
| 2. The interior angles of a hexagon are $2r$ ,                                                             |                                                                                   |
| 3r, $2r$ , $5r$ , $r$ and $2r$ . Find the value of $r$ .                                                   |                                                                                   |
|                                                                                                            |                                                                                   |
| 3. Three angles of a hexagon are $2m^\circ$ each.                                                          | Exercise 4 Date:                                                                  |
| The others are $3m^{\circ}$ , $5m^{\circ}$ and $m^{\circ}$ . Find                                          | 1. Four angles of a hexagon are 130°, 160°                                        |
| $m^{\circ}.$                                                                                               | 112° and 80°. If the remaining angles                                             |
|                                                                                                            | are equal, find the size of each of them.'                                        |
|                                                                                                            | 2. Three interior angles of a pentagon are                                        |
|                                                                                                            | 100°, 120° and 108°. Find the size of                                             |
|                                                                                                            | each of the remaining two angles, if one                                          |
|                                                                                                            | of them is three times the other.                                                 |
|                                                                                                            |                                                                                   |
|                                                                                                            | 3. Two angles of a pentagon are 120° and                                          |
|                                                                                                            | 108°. The remaining three angles are                                              |
|                                                                                                            | congruent. Find the measure of each                                               |
|                                                                                                            | angle.                                                                            |
|                                                                                                            | 4. Two angles of a hexagon are 120° and                                           |
|                                                                                                            | 180°. The remaining four angles are                                               |
|                                                                                                            | equal. Find the measure of each equal                                             |
|                                                                                                            | angle.                                                                            |
|                                                                                                            | Three interior analysis of a nalvanian                                            |
|                                                                                                            | 5. Three interior angles of a polygon are 160° each. If the other interior angles |
|                                                                                                            | are 120° <b>each</b> , find the number of sides                                   |
| · · · · · · · · · · · · · · · · · · ·                                                                      | of the polygon.                                                                   |
|                                                                                                            | 1 70-                                                                             |
|                                                                                                            |                                                                                   |
|                                                                                                            |                                                                                   |
|                                                                                                            |                                                                                   |
|                                                                                                            |                                                                                   |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

## Example 4

Find the value of *x* in the diagram.



$$S = (n-2) \times 180^{\circ}$$
  
  $2x + 3x + x + 4x + 70^{\circ} = (5-2) \times 180^{\circ}$ 

Since 
$$n = 5$$
,  
 $\Rightarrow 10x + 70^{\circ} = 540^{\circ}$   
 $10x = 540^{\circ} - 70^{\circ}$   
 $10x = 470^{\circ}$   
 $x = 47^{\circ}$ 

Exercise 5 Date:.....

Find the value of x in the following diagrams.

1.



2.



3.



4.



| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |

|      | _ |
|------|---|
|      |   |
| <br> |   |
|      |   |
|      | _ |
|      |   |
| <br> | _ |
|      |   |
| <br> | _ |
|      |   |
| <br> | _ |
|      |   |
| <br> | _ |
|      |   |
| <br> |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
| <br> |   |
|      |   |
| <br> | _ |
|      |   |
|      | _ |
|      |   |
| <br> | _ |
|      |   |
| <br> | _ |
|      |   |
| <br> | _ |
|      |   |

Each interior angle of a regular polygon:  $\frac{(n-2)\times 180^{\circ}}{n}$ , where n is the number of sides.

### Example 5

Calculate the number of sides of a regular polygon whose interior angles are each 150°.

Solution...

Each interior angle = 
$$\frac{(n-2)\times180^{\circ}}{n}$$
  
 $150^{\circ} = \frac{(n-2)\times180^{\circ}}{n}$   
 $150^{\circ}n = (n-2)\times180^{\circ}$   
 $150^{\circ}n = 100^{\circ}n$ 

$$150^{\circ}n = 180^{\circ}n - 360^{\circ}$$

$$360^{\circ} = 180^{\circ}n - 150^{\circ}n$$
  
 $360^{\circ} = 30^{\circ}n$ 

$$n = 12$$

$$\therefore$$
The number of sides of a regular polygon is 12.

|      | Each of the interior angles of a regular polygon is 140°. How many sides have it? |                                                                                       |
|------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 2.   | The interior angle of a regular polygon is 108°. How many sides has the polygon?  |                                                                                       |
| 3.   | The interior angle of a regular polygon                                           |                                                                                       |
|      | is 120°. How many sides has the polygon?                                          |                                                                                       |
|      |                                                                                   |                                                                                       |
| <br> |                                                                                   |                                                                                       |
| <br> |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
| <br> |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
| <br> |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
| <br> |                                                                                   |                                                                                       |
|      |                                                                                   |                                                                                       |
|      |                                                                                   | Exercise 7 Date:                                                                      |
|      |                                                                                   | Determine the number of sides of these regular polygons, if each interior angle is of |
| <br> |                                                                                   | the following size.                                                                   |
| <br> |                                                                                   | 1. 165° 5. 135°                                                                       |
|      |                                                                                   | 2. 170° 6. 120°                                                                       |
| <br> |                                                                                   | 3. 160° 7. 157.5°                                                                     |
|      |                                                                                   | 4. 108° 8. 162°                                                                       |

| <del></del> |                                             |
|-------------|---------------------------------------------|
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
| <del></del> |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
| <del></del> |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             |                                             |
|             | Exercise 8 Date:                            |
|             |                                             |
|             | 1. Find the interior angle of a 12 sided    |
| <del></del> | regular polygon.                            |
|             | 2. The interior and of a second size 1250   |
| <del></del> | 2. The interior angle of a regular is 135°. |
|             | How many sides has the polygon.             |
|             |                                             |
|             | 3. Calculate the number of sides of a       |
|             | regular polygon whose interior angles       |
|             | are each 156°.                              |

| <del></del> |                                                                                                                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             |                                                                                                                                                                                     |
|             | Energies 0 Deter                                                                                                                                                                    |
|             | Exercise 9 Date:                                                                                                                                                                    |
|             | <ol> <li>Find the sum of the interior angles of</li> </ol>                                                                                                                          |
|             | e e                                                                                                                                                                                 |
|             | the following polygons                                                                                                                                                              |
|             | the following polygons                                                                                                                                                              |
|             | the following polygons (a) A hexagon                                                                                                                                                |
|             | the following polygons<br>(a) A hexagon<br>(b) A nonagon                                                                                                                            |
|             | the following polygons (a) A hexagon                                                                                                                                                |
|             | the following polygons (a) A hexagon (b) A nonagon (c) A heptagon                                                                                                                   |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of                                                                     |
|             | the following polygons (a) A hexagon (b) A nonagon (c) A heptagon                                                                                                                   |
|             | the following polygons  (a) A hexagon  (b) A nonagon  (c) A heptagon  2. Find the value of each interior angle of the following polygons                                            |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square                                 |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon                  |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon                  |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |
|             | the following polygons  (a) A hexagon (b) A nonagon (c) A heptagon  2. Find the value of each interior angle of the following polygons (i) A square (ii) A decagon (iii) An octagon |

| <br>                                          |
|-----------------------------------------------|
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
| <br>                                          |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
| <br>                                          |
|                                               |
| <br>                                          |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
| Exercise 10 Date:                             |
| <br>Exercise 10 Date                          |
|                                               |
| <br>1. The sum of the interior angles of a    |
| 1. The sum of the interior angles of a        |
| <br>polygon of $n$ sides is 2160°. Find $n$ . |
|                                               |
| <br>2. F. d l C l l. 1600                     |
| 2. Each angle of a regular polygon is 168°.   |
| How many sides has it?                        |
| Trow many brace has it.                       |
|                                               |
| <br>3. Two angles of a hexagon are 120° and   |
| 1000 The remaining four angles are            |
| <br>180°. The remaining four angles are       |
| equal. Find the measure of each equal         |
|                                               |
| angle.                                        |
|                                               |
| <br>                                          |
|                                               |
| <br>                                          |
|                                               |
| <br>                                          |
|                                               |
|                                               |
|                                               |
| <br>                                          |
|                                               |
| <br>                                          |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
| <br>                                          |
|                                               |
| <br>                                          |
|                                               |
| <br>                                          |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
| <br>                                          |

| <br>                                                                        |
|-----------------------------------------------------------------------------|
|                                                                             |
| <br>                                                                        |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
| <br>                                                                        |
|                                                                             |
| <br>                                                                        |
|                                                                             |
| <br>                                                                        |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
| <br>Enemales 11 Date:                                                       |
| Exercise 11 Date:                                                           |
| <br>1. The angles of a pentagon are $x^{\circ}$ , $2x^{\circ}$ ,            |
| $(x + 60)^{\circ}$ $(x + 10)^{\circ}$ $(x + 10)^{\circ}$ Find the           |
| <br>$(x + 60)^{\circ}$ , $(x + 10)^{\circ}$ , $(x - 10)^{\circ}$ . Find the |
| value of $x$ .                                                              |
|                                                                             |
|                                                                             |
| 2. Three angles of a hexagon are each $x^{\circ}$ .                         |
| The others are each $3x^{\circ}$ . Find x.                                  |
| The others are each 3x. Thu x.                                              |
|                                                                             |
| 3. The interior angles of a pentagon are in                                 |
| 3. The interior differs of a pentagon are in                                |
| the ratio 2: 3: 4: 4: 5. Find the value of                                  |
| the largest angle.                                                          |
| the largest ungle.                                                          |
| <br>                                                                        |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
| <br>                                                                        |
|                                                                             |
|                                                                             |
|                                                                             |
| <br>                                                                        |
|                                                                             |
| <br>                                                                        |
|                                                                             |
| <br>                                                                        |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
| <br>                                                                        |
|                                                                             |
|                                                                             |
| <br>                                                                        |
|                                                                             |

| _        |
|----------|
|          |
| <br>_    |
|          |
| <br>_    |
|          |
| _        |
| <br>_    |
|          |
| <br>_    |
|          |
| <br>_    |
|          |
| _        |
|          |
| <br>     |
|          |
| <br>_    |
|          |
| _        |
|          |
| <br>_    |
| <br>_    |
| <br>_    |
| <br>_    |
|          |
| <br>_    |
|          |
| <br>_    |
|          |
| _        |
|          |
| <br>     |
|          |
| _        |
|          |
| _        |
|          |
|          |
| <br>_    |
|          |
| _        |
|          |
|          |
|          |
|          |
| _        |
| _        |
| _        |
| _        |
| <br>     |
|          |
|          |
| <br><br> |
|          |
|          |
|          |
|          |

Sum of the Exterior Angles of a Polygon Add Up To  $360^{\circ}$ 



$$\hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} = 360^{\circ}$$

The exterior angle of a regular polygon is given by  $\frac{360^{\circ}}{n}$ .

### Example 6

A regular polygon has 6 sides. Find

- (a) the exterior angle
- (b) the interior angle
- (c) the sum of interior angles

## Solution...

- (a) the exterior angle of a regular polygon  $=\frac{360^{\circ}}{n}$ , where n is the number of sides. Given, n=6  $\therefore$  the exterior angle  $=\frac{360^{\circ}}{6}=60^{\circ}$
- (b) the exterior angle + the corresponding interior angle of a polygon =  $180^{\circ}$   $\Rightarrow 60^{\circ}$  + interior angle =  $180^{\circ}$   $60^{\circ}$  interior angle =  $180^{\circ}$   $60^{\circ}$  =  $120^{\circ}$

(c) 
$$S = (n-2) \times 180^{\circ}$$
  
Given,  $n = 6$   
 $\Rightarrow S = (6-2) \times 180^{\circ}$   
 $= 4 \times 180^{\circ}$   
 $= 720^{\circ}$ 

## Example 7

Find x and y.



| Solution                                                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------|--|
| Sum of the exterior angles add up to 360°                                                                               |  |
| $\Rightarrow x + x + x + x + x + x + x = 360^{\circ}$ $6x = 360^{\circ}$                                                |  |
| $\frac{6x - 300}{6}$                                                                                                    |  |
| $\overset{6}{x} = \overset{6}{60}^{\circ}.$                                                                             |  |
|                                                                                                                         |  |
| The exterior angle + corresponding interior                                                                             |  |
| angle of a polygon = $180^{\circ}$ i.e. from the diagram,                                                               |  |
| $\Rightarrow x + y = 180^{\circ}$                                                                                       |  |
| $60^{\circ} + y = 180^{\circ}$<br>$y = 180^{\circ} - 60^{\circ}$                                                        |  |
| $y = 180^{\circ} - 60^{\circ}$<br>$y = 120^{\circ}$                                                                     |  |
| Exercise 12 Date:                                                                                                       |  |
| 1. Calculate the size of an exterior of a                                                                               |  |
| regular pentagon.                                                                                                       |  |
| 2. The exterior angle of a regular polygon                                                                              |  |
| <ul><li>is 40°. Find the sum of its interior angle.</li><li>3. The exterior angle of a regular of a</li></ul>           |  |
| regular polygon is 70°. Find the sum of                                                                                 |  |
| its interior angles.'                                                                                                   |  |
| 4. The exterior angles of a pentagon are $(3x + 5)^{\circ}$ , $(x + 2)^{\circ}$ , $5x^{\circ}$ , $(6x - 8)^{\circ}$ and |  |
| $(x + 9)^{\circ}$ . Find the value of $x$ .                                                                             |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |
|                                                                                                                         |  |

| Exc  | ercise 13 Date:                                                                                                                       | Ī  |                                                                                                                                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.   | The exterior angles of a pentagon are $x^{\circ}$ , $2x^{\circ}$ , $3x^{\circ}$ , $3x^{\circ}$ and $2x^{\circ}$ . What is the size of |    |                                                                                                                                                                                                                                           |
|      | the largest angle?                                                                                                                    |    |                                                                                                                                                                                                                                           |
| 2.   | What is the size of the exterior angle of                                                                                             |    |                                                                                                                                                                                                                                           |
|      | a regular polygon of 10 sides?                                                                                                        |    |                                                                                                                                                                                                                                           |
| 3.   | Each exterior angle of a polygon is 30°.                                                                                              |    |                                                                                                                                                                                                                                           |
|      | Calculate the sum of the interior angles.                                                                                             |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
| <br> |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
| <br> |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
| <br> | <del>-</del>                                                                                                                          |    |                                                                                                                                                                                                                                           |
| <br> |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
| <br> |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       | 1. | The ratio of the exterior angle to the interior angle of a regular polygon is 1: 11. How many sides has the polygon?  The ratio of the interior angle to the exterior angle of a regular polygon is 5: 2. Find the number of sides of the |
|      |                                                                                                                                       |    | polygon.                                                                                                                                                                                                                                  |
|      |                                                                                                                                       | 3. | In a regular polygon, the interior angle is 108° greater than the exterior angle. Calculate the number of sides of the                                                                                                                    |
|      |                                                                                                                                       |    | polygon.                                                                                                                                                                                                                                  |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
| <br> |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |
|      |                                                                                                                                       |    |                                                                                                                                                                                                                                           |

| <br>                                                                                            |
|-------------------------------------------------------------------------------------------------|
| <br>                                                                                            |
|                                                                                                 |
| <br>                                                                                            |
|                                                                                                 |
|                                                                                                 |
| <br>                                                                                            |
| <br>Exercise 15 Date:                                                                           |
| <ol> <li>Find the number of sides of a regular polygon whose interior angle is three</li> </ol> |
| <br>times the exterior angle.                                                                   |
| 2. The exterior of a polygon are $2x^{\circ}$ ,                                                 |
| <br>$(x-20)^{\circ}$ , $x^{\circ}$ , $(3x+10)^{\circ}$ , $(x+15)^{\circ}$ and                   |
| <br>$(2x + 5)^{\circ}$ . Find the value of x.                                                   |
| <br>3. The sum of all the interior and exterior                                                 |
| <br>angles of a regular polygon is 1080°.                                                       |
| <br>Find the number of sides.                                                                   |
| <br>4.                                                                                          |
| <br>•                                                                                           |
| BA                                                                                              |
| <br>$B \longrightarrow A$                                                                       |
| <br>c /                                                                                         |
|                                                                                                 |
|                                                                                                 |
| <br>D $E$ $F$                                                                                   |
| <br>ABCDEF is a regular pentagon                                                                |
| <br>DEF is a straight line.                                                                     |
| Calculate (i) <aef (ii)="" <dae<="" td=""></aef>                                                |
|                                                                                                 |

| 5. A regular polygon of <i>n</i> sides is such that |   |
|-----------------------------------------------------|---|
| each interior angle is 120° greater than            |   |
| the exterior angle. Find (i) The value of $n$       |   |
| (ii) The sum of all the interior angles             |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
| <del></del>                                         |   |
| <del></del>                                         |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
| <del></del>                                         |   |
| <del></del>                                         |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     | · |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |

| <br> |
|------|
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |

Exercise 16

Date:....

1. From the diagram, find the value of x.



2. Find the angle x in the diagram.



3.



Find the angle marked x in the diagram.

4.



5.



In the diagram, *PQRST* is a regular pentagon. Calculate the size of < *SPO*.

|             | _ |
|-------------|---|
|             |   |
|             | _ |
|             |   |
|             | _ |
|             |   |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | _ |
|             |   |
|             | _ |
|             |   |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | _ |
|             |   |
|             |   |
|             | _ |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | _ |
|             |   |
|             | _ |
|             |   |
|             |   |
|             | _ |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | _ |
|             |   |
|             | _ |
| <del></del> |   |
|             | _ |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | - |
|             |   |
|             | _ |
|             |   |
|             | _ |
|             |   |
|             | _ |
|             | - |
|             |   |
|             | - |
|             |   |
|             |   |

Exercise 17

Date:....

1.



The pentagon has three angles which are 140°. The other two angles are equal. Calculate the size of one of these angles.

2.



ABCDEFGH is a regular octagon.

- (a) Show that angle  $BCD = 135^{\circ}$
- (b) Find
  - (i) angle DEB
  - (ii) angle FEB

3.



The sides of the octagon are extended to from the square PQRS. The length of each side of the octagon is 12cm and the length of BP is 8.485cm. Calculate the area of

- (i) triangle *BPC*
- (ii) the octagon ABCDEFGH.

| 4. ABCDE is a regular pentagon and a         |  |
|----------------------------------------------|--|
| rectangular AXYE is drawn on the side        |  |
| AE such that the vertices $X$ and $Y$ lie on |  |
| the sides BC and CD respectively.            |  |
| Calculate the size of                        |  |
| (i) an interior angle of the pentagon.       |  |
| (i) all interior aligie of the pentagon.     |  |
| (ii) $\langle BXA.$                          |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
| <del></del>                                  |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
| <del></del> -                                |  |
|                                              |  |

| Exercise 18                | Date:          |
|----------------------------|----------------|
| Find <i>x</i> in the follo | wing diagrams. |

1.



2.



3.



- 4. If each interior angles of a regular polygon is five times the exterior angle, how many sides has the polygon?
- 5. The sum of the interior angles of a regular polygon is 1440°, calculate:
  - (i) the number of sides.
  - (ii) the size of one exterior angle of the polygon.
- 6. In a given regular polygon, the ratio of the exterior angle to the interior angle is 1:3. How many sides has the polygon?

| <del></del> |
|-------------|
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |

| <br> |
|------|
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |

#### Exercise 19

Date:....

1.

(a) The table show how many sides different polygons has. Complete the table.

| tabici          |                 |  |
|-----------------|-----------------|--|
| Name of polygon | Number of sides |  |
|                 | 3               |  |
| Quadrilateral   | 4               |  |
|                 | 5               |  |
|                 | 6               |  |
|                 | 7               |  |
|                 | 8               |  |
| Nonagon         | 9               |  |

(b) Two sides *AB* and *BC* of a regular nonagon are shown in the diagram below,



- (i) Work out the value of *x*, the exterior angle
- (ii) Find the value of angle *ABC*, the interior angle of a regular nonagon.
- 2. The diagram shows a regular pentagon. *AB* is a line of symmetry.

(a)



(b)



- The diagram shows an octagon. All of the sides are the same length. Four of the interior angles are each  $32^{\circ}$ . The other four interior angles are equal. Find the value of x.
- 3. The formula for finding the interior angle of a regular polygon with n sides is given below:

interior angle =  $\frac{180(n-2)}{n}$ 

- (i) Find the size of the interior angle of a regular polygon with 9 sides
- (ii) A regular polygon has and interior of 156°. How many sides does this polygon have?
- 4. The interior angle of a regular n sided polygon is  $48^{\circ}$  more than the interior angle of a regular hexagon.
  - (a) Find the size of the interior angle
  - (b) Find the value of *n*
- 5. *PQRSTU* is a polygon. *O* is any point inside the region of the polygon.



- 6. An irregular polygon consists of 16 triangles. The sum of 12 of its interior angles is 1236°, the next three interior angles sum up to 522°, and the remaining are equal and acute.
  - (i) How many sides has the polygon?
  - (ii) What is the size of the remaining equal angles?

#### **CHANGE OF SUBJECT**

Suppose m = n + 3, to make n the subject means rewriting this relation in an equivalent form, where *n* will be alone on one side of the equality sign. We can rewrite the relation as m - 3 = n. We normally write relations with the subject on the left – hand side (LHS), so the form we want is n = m - 3.

#### **CASE 1: LINEAR FORM**

#### Example 1

Make *x* the subject in the following:

1. 
$$x + m = t$$

3. 
$$a = b(x - 3)$$

2. 
$$y = 3x - 2$$

#### Solution...

1. 
$$x + m = t$$
  
 $x = t - m$ 

2. 
$$y = 3x - 2$$
$$y + 2 = 3x$$
$$\frac{y+2}{3} = \frac{3x}{3}$$
$$\therefore x = \frac{y+2}{3}$$

3. 
$$a = b(x - 3)$$

$$a = bx - 3b$$

$$a + 3b = bx$$

$$x = \frac{a+3b}{b}$$

| Exercise 1 | Date: |
|------------|-------|
|            |       |

Make *x* the subject in the following

- 1. x + c = 4
- 2. m + x = 7
- 3. 3x = 2y + t
- 4. z = 8x y
- 5. b(x-1) = 7(x-5)

|  | <br> |      |
|--|------|------|
|  | <br> |      |
|  | <br> |      |
|  |      |      |
|  | <br> |      |
|  | <br> |      |
|  | <br> |      |
|  |      |      |
|  | <br> |      |
|  |      |      |
|  | <br> | <br> |

#### Date:.... Exercise 2

Make the variable shown in brackets the subject if the formula in each case.

- 1. e = m(x c)
- (x)
- 2. t(y + x) = v
- (x)
- 3. I = mv mu
- (*m*)
- 4. ap = px + c

- (p)
- 5. r(s-x) = 2x + r
- (x)(h)
- 6. n(m+n) = m(h+r)7. a - b = x(c - nd)
- (n)
- 8.  $A = 2\pi r + 2\pi r h$
- (h)
- 9. a(x + 3) = by x
- (x)

| <del>-</del> |                                                                         |
|--------------|-------------------------------------------------------------------------|
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
| <del></del>  |                                                                         |
|              |                                                                         |
|              |                                                                         |
| <del>-</del> |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
|              |                                                                         |
| <del></del>  | Exercise 3 Date:                                                        |
|              | 1. (i) Find the value of $a^3 - 3ab - b^2$ , when $a = -2$ and $b = 2$  |
|              | (ii) Find the value of $x^3 + xy^2 + 3y^3$                              |
| <del>-</del> | when $x = -2$ , $y = 1$ .                                               |
| <del>-</del> | (iii) Evaluate $m^2p - p(m-p)$ if $m = -3$ and $p = 5$ .                |
| <del>-</del> | (iv) Find the value of $(2x - y)(x^2 + y^2)$                            |
|              | when $x = 4$ and $y = -2$ .                                             |
|              | (v) Given that $x = -2$ and $y = 3$ ,<br>evaluate $x^3 + 5x^2y - y^3$ . |
|              |                                                                         |
|              | 2. (i) Make $l$ the subject of the relation $A = \pi r l + \pi r^2$ .   |
|              | (ii) Find $l$ when $r = 3$ , $A = 176$ and                              |
|              | $\pi = \frac{22}{7}$ .                                                  |
|              | 3. If $\frac{x}{x-z} = \frac{y}{z-y}$ , find z when $x = 2$ and         |
|              | y=3.                                                                    |
|              | 4. If $x = -1$ , $y = -3$ , $z = -4$ and $w = -7$ ,                     |
|              | evaluate: $\frac{x^3 - y^2}{2w - z}$ .                                  |

| <br>                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
| <br>                                                                                                                                                                                                                                                                                                                                                                              |
| <br>                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                   |
| CASE 2: FRACTIONAL FORM                                                                                                                                                                                                                                                                                                                                                           |
| CASE 2: FRACTIONAL FORM                                                                                                                                                                                                                                                                                                                                                           |
| Example 2                                                                                                                                                                                                                                                                                                                                                                         |
| Example 2                                                                                                                                                                                                                                                                                                                                                                         |
| Example 2 Make <i>x</i> the subject in the following                                                                                                                                                                                                                                                                                                                              |
| Example 2 Make <i>x</i> the subject in the following                                                                                                                                                                                                                                                                                                                              |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$                                                                                                                                                                                                                                                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$                                                                                                                                                                                                                                                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$                                                                                                                                                                                                                                                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$                                                                                                                                                                                                                                                                                    |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$                                                                                                                                                                                                                                                                                    |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$                                                                                                                                                                                                                                                                                    |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$                                                                                                                                                                                                                                                                                    |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$                                                                                                                                                                                                                                                                                    |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$                                                                                                                                                                                                                                                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$                                                                                                                                                                                                                        |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$                                                                                                                                                                                                                        |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution                                                                                                                                                                                                               |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution                                                                                                                                                                                                               |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$                                                                                                                                                                                       |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$                                                                                                                                                                                       |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$                                                                                                                                                                                       |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$                                                                                                                                                 |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$                                                                                                                                       |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$                                                                                                                                       |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$                                                                                                                                       |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$                                                                                                                                       |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$                                                                                                                                       |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$                                                                                                                                                 |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$                                                                           |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$ 2. $\frac{x+b}{c} = d$ $\frac{x+b}{c} \times c = d \times c$              |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$ 2. $\frac{x+b}{c} = d$ $\frac{x+b}{c} \times c = d \times c$              |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$ 2. $\frac{x+b}{c} = d$ $\frac{x+b}{c} \times c = d \times c$ $x + b = dc$ |
| Example 2 Make $x$ the subject in the following  1. $m = \frac{1}{2}xt$ 2. $\frac{x+b}{c} = d$ 3. $r = \frac{x+1}{x-2}$ 4. $t = \frac{1}{p} + \frac{1}{x}$ Solution  1. $m = \frac{1}{2}xt$ $2 \times m = 2 \times \frac{1}{2}xt$ $2m = xt$ $\frac{2m}{t} = \frac{xt}{t}$ $\therefore x = \frac{2m}{t}$ 2. $\frac{x+b}{c} = d$ $\frac{x+b}{c} \times c = d \times c$              |

| 3. | $r = \frac{x+1}{x-2}$  |
|----|------------------------|
|    | r(x-2)=x+1             |
|    | rx - 2r = x + 1        |
|    | rx - x = 1 + 2r        |
|    | x(r-1) = 1 + 2r        |
|    | $x = \frac{1+2r}{r-1}$ |
|    | r-1                    |

4. 
$$t = \frac{1}{p} + \frac{1}{x}$$

$$xp \times t = xp \times \frac{1}{p} + xp \times \frac{1}{x}$$

$$xpt = x + p$$

$$xpt - x = p$$

$$x(pt - 1) = p$$

$$x = \frac{p}{pt - 1}$$

#### Exercise 4 Date:.....

Make the variable shown in brackets the subject of the formula in each case.

1. 
$$E = \frac{1}{2}mc^2$$
 (m)  
2.  $p = \frac{3m+1}{m}$  (m)  
3.  $w = \frac{n-q}{q}$  (q)  
4.  $v = \frac{1}{2}\pi r^2 h$  (h)

2. 
$$p = \frac{3m+1}{m}$$
 (m)  
3.  $w = \frac{n-q}{m}$  (q)

4. 
$$v = \frac{1}{2}\pi r^2 h$$
 (h)

| 4. $V = \frac{1}{3}\pi T R$              | (n)          |
|------------------------------------------|--------------|
| 5. $\frac{v = \frac{1}{3}\pi r}{xy} = 3$ | (y)          |
| $3. \frac{1}{xy} = 3$                    | ( <i>y</i> ) |
| -                                        |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |
|                                          |              |

| Exercise 5                              | Date:               |                                                       |              |
|-----------------------------------------|---------------------|-------------------------------------------------------|--------------|
| Make the variable sh                    | own in brackets the |                                                       |              |
| subject of the formul                   | la in each case.    |                                                       |              |
| 1. $z = \frac{3y+2}{y-1}$               | (y)                 |                                                       |              |
| I 2                                     |                     |                                                       |              |
| m-n 4                                   | (n)                 |                                                       |              |
| $3.  \frac{3m-n}{5m-n} = \frac{p}{q}$   | (m)                 |                                                       |              |
| $4.  t = \frac{a - m}{1 + am}$          | (a)                 |                                                       |              |
| 5. $\frac{m^{1+am}}{m} = \frac{r}{m}$   |                     |                                                       |              |
| $5.  \frac{1}{m-y+2} = \frac{1}{y+r-1}$ | <i>(y)</i>          |                                                       |              |
| <br>                                    |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
|                                         |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
|                                         |                     |                                                       |              |
|                                         |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
|                                         |                     |                                                       |              |
|                                         |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
|                                         |                     |                                                       |              |
|                                         |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
|                                         |                     |                                                       |              |
|                                         |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
|                                         |                     |                                                       |              |
|                                         |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
|                                         |                     |                                                       |              |
|                                         |                     |                                                       |              |
|                                         |                     |                                                       |              |
| <br>                                    |                     |                                                       |              |
|                                         |                     |                                                       |              |
|                                         |                     |                                                       |              |
| <br>                                    |                     | Exercise 6                                            | Date:        |
| <br>                                    |                     | Make the variable sho                                 |              |
|                                         |                     | subject of the formula                                |              |
|                                         |                     | 1. $\frac{1}{y} = \frac{1}{c} + \frac{1}{x}$          | (y)          |
| <br>                                    |                     | $2.  f = \frac{t}{s} - m$                             | (s)          |
| <br>                                    |                     | 3. $\frac{1}{m} + \frac{1}{n} = \frac{1}{p}$          | ( <i>m</i> ) |
|                                         |                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |              |
| <br>                                    |                     | $4.  \frac{1}{m} = t - \frac{1}{n}$                   | (n)          |
| <br>                                    |                     | 5. $\frac{1}{11} - \frac{1}{11} = \frac{1}{6}$        | (u)          |

| <del></del> |   |
|-------------|---|
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             |   |
|             | I |

| Fyercise 7 Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hrackate tha                        |  |
| Make the variable shown in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | brackets the                        |  |
| Make the variable shown in subject of the formula in eac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | brackets the<br>h case              |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | brackets the                        |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | brackets the<br>h case<br>(p)       |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | brackets the h case (p) (w)         |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | brackets the h case (p) (w)         |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d)     |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w)         |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | brackets the h case (p) (w) (d)     |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the formula in each of the fo | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$ 2. $\frac{a+bc}{wd+f} = y$ 3. $S = \frac{n}{2}[2a + (n-1)d]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$ 2. $\frac{a+bc}{wd+f} = y$ 3. $S = \frac{n}{2}[2a + (n-1)d]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$ 2. $\frac{a+bc}{wd+f} = y$ 3. $S = \frac{n}{2}[2a + (n-1)d]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$ 2. $\frac{a+bc}{wd+f} = y$ 3. $S = \frac{n}{2}[2a + (n-1)d]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | brackets the h case (p) (w) (d) (m) |  |
| Make the variable shown in subject of the formula in each 1. $y = \frac{a+p}{a-p}$ 2. $\frac{a+bc}{wd+f} = y$ 3. $S = \frac{n}{2}[2a + (n-1)d]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | brackets the h case (p) (w) (d) (m) |  |

| ·            |                                                                             |
|--------------|-----------------------------------------------------------------------------|
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              | Exercise 8 Date:                                                            |
|              | Make the variable shown in brackets the                                     |
|              | subject of the formula in each case.                                        |
|              | 1. $x + 5 = k + \frac{x}{3}$ (x)                                            |
|              | 2. $d(x-7) = 3 + \frac{x-b}{5}$ (x)                                         |
|              | 3. $2x - 5 = \frac{3}{5}(x - f)$ (x)                                        |
|              | 4. $p+5=\frac{1-2r}{r}$ (r)                                                 |
|              | 5. $q = \frac{3p}{r} + \frac{s}{2}$ (p)<br>6. $p = s + \frac{sm^2}{nr}$ (s) |
|              | $6.  p = s + \frac{sm^2}{nr} \tag{s}$                                       |
|              | 7. $u = 1 - \frac{u}{3v}$ (t)                                               |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
| <del>-</del> |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |
|              |                                                                             |

| <del></del> |  |
|-------------|--|
|             |  |

| Exercise 9 Date:                                    |  |
|-----------------------------------------------------|--|
| 1. $S = \frac{n}{2}[2a + (n-1)d]$ , where $n > 0$ . |  |
|                                                     |  |
| Find the value of $n$ , if $a = 3$ , $d = 4$ and    |  |
| S = 210.                                            |  |
|                                                     |  |
| 1 1 1                                               |  |
| 2. If $\frac{1}{m} + \frac{1}{n} = \frac{1}{p'}$    |  |
| (i) Europea m in terms of m and m                   |  |
| (i) Express $m$ in terms of $n$ and $p$             |  |
| (ii) Calculate $m$ correct to one decimal           |  |
| place when $n = 17.24$ and                          |  |
| p = 16.41                                           |  |
| p 10.11                                             |  |
| 2(AB)                                               |  |
| 3. Given that $S = \frac{m^2(tP-n)}{2Pn}$           |  |
| 2Pn                                                 |  |
| (i) Make <i>P</i> the subject of the relation       |  |
| (ii) Find the value of $P$ if $m = 4$ ,             |  |
| $S = 60, n = \frac{1}{3}$ and $t = 4$ .             |  |
| 3                                                   |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
| _                                                   |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |
|                                                     |  |

| <del>-</del> |                                                                                    |
|--------------|------------------------------------------------------------------------------------|
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              |                                                                                    |
|              | CACE 2. EVDONENIEM AND DOOMS FORM                                                  |
|              | CASE 3: EXPONENTIAL AND ROOTS FORM                                                 |
|              | Example 3                                                                          |
|              | Make the variable shown in brackets the                                            |
|              | subject of the formula in each case.                                               |
|              | $1.  A = \pi r^2 \tag{r}$                                                          |
|              | $2.  a^2 + b^2 = c^2 \tag{b}$                                                      |
|              | 3. $\frac{xt}{7} = \frac{p+2}{3x}$ (x)                                             |
| <del></del>  | , 32                                                                               |
|              | Solution                                                                           |
|              | 1. $A = \pi r^2$                                                                   |
|              | $\frac{A}{\pi} = \frac{\pi r^2}{\pi}$ $r^2 = \frac{A}{\pi}$                        |
| <del></del>  | $r^2 = \frac{A}{A}$                                                                |
|              | , π                                                                                |
|              | $r=\pm\sqrt{rac{A}{\pi}}$                                                         |
|              | V"                                                                                 |
| <del></del>  | 2. $a^2 + b^2 = c^2$                                                               |
|              | $b^2 = c^2 - a^2$                                                                  |
|              | $h - \pm \sqrt{c^2 - a^2}$                                                         |
|              | 3. $\frac{xt}{a} = \frac{p+2}{a}$                                                  |
|              | 3. $\frac{xt}{7} = \frac{p+2}{3x}$ $(xt) \times (3x) = 7(p+2)$ $2x^{2}t = 7x + 14$ |
|              | $3x^2t = 7p + 14$                                                                  |
|              | $3x^{2}t = 7p + 14$ $x^{2} = \frac{7p + 14}{3t}$                                   |
|              | 3t                                                                                 |
| <del>-</del> | $x = \pm \sqrt{\frac{7p + 14}{3t}}$                                                |
|              |                                                                                    |

| Exercise 10 Date:                                                                        |  |
|------------------------------------------------------------------------------------------|--|
| Make the variables shown in brackets the                                                 |  |
| subject of the formula in each case.                                                     |  |
| $1.  v = \frac{1}{3}\pi r^2 h \tag{r}$                                                   |  |
| $2.  J = \frac{1}{2}mv^2 \tag{v}$                                                        |  |
| 3. $v^2 = u^2 + 2ax$ (u)                                                                 |  |
| 4. $E = \frac{m}{2g}(v^2 - u^2)$ (v)                                                     |  |
| $S = R - c + \frac{sm^2}{sm^2} $ (m)                                                     |  |
| $5. P = s + \frac{sm}{nr} $ (m)                                                          |  |
| 5. $P = s + \frac{sm^2}{nr}$ (m)<br>6. $R = \frac{h}{2} + \frac{d^2}{8h}$ (d)            |  |
| 7. $v = \frac{1}{6}\pi h(3r^2 + h^2)$ (r)                                                |  |
| 7. $v = \frac{1}{6}\pi h(3r^2 + h^2)$ (r)<br>8. $l = g\left(\frac{T}{2\pi}\right)^2$ (T) |  |
| $G_{n} = G_{n} = G_{n}$                                                                  |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |
|                                                                                          |  |

| <del></del> |                                                           |
|-------------|-----------------------------------------------------------|
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
| <del></del> |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
| <del></del> |                                                           |
|             |                                                           |
|             | Exercise 11 Date:                                         |
|             | 1. (a) Given that $p = x + ym^3$ , find m in              |
|             | terms of $p$ , $x$ and $y$ .                              |
|             | ( $\beta$ ) If $V = \sqrt[3]{p+r}$ , make $r$ the subject |
|             |                                                           |
|             | 2. If $p = \frac{m}{2} - \frac{n^2}{5m}$                  |
|             | (i) Make <i>n</i> the subject of the relation             |
|             | (ii) Find, correct to three significant                   |
|             | figures, the value of $n$ when $p = 14$ and $m = -8$      |
|             |                                                           |

| <del>-</del> |                                                    |
|--------------|----------------------------------------------------|
|              |                                                    |
|              |                                                    |
|              |                                                    |
| <del></del>  |                                                    |
|              |                                                    |
|              |                                                    |
|              |                                                    |
|              |                                                    |
|              |                                                    |
|              |                                                    |
|              |                                                    |
| <del>-</del> | <del></del>                                        |
|              |                                                    |
|              |                                                    |
|              |                                                    |
|              |                                                    |
|              | Example 4                                          |
|              | Make $x$ the subject in the following              |
| <del></del>  | 1. $\sqrt{x} = b$                                  |
|              | $2.  r = m \sqrt{\left(\frac{x}{n}\right)}$        |
|              | 3. $p = \sqrt{q^2 - \frac{r^2}{x^2}}$              |
|              |                                                    |
|              | Solution                                           |
|              | 1. $\sqrt{x} = b$ Squaring both sides              |
|              | $(\sqrt{r})^2 = h^2$                               |
|              | Squaring both sides $(\sqrt{x})^2 = b^2$ $x = b^2$ |
|              | · · · · · · · · · · · · · · · · · · ·              |

2. 
$$r = m\sqrt{\left(\frac{x}{n}\right)}$$

$$\frac{r}{m} = \sqrt{\left(\frac{x}{n}\right)}$$

Squaring both sides

$$\left(\frac{r}{m}\right)^2 = \left(\sqrt{\left(\frac{x}{n}\right)}\right)^2$$

$$\left(\frac{r}{m}\right)^2 = \frac{x}{n}$$
$$x = n\left(\frac{r}{m}\right)^2$$

3. 
$$p = \sqrt{q^2 - \frac{r^2}{x^2}}$$

Squaring both sides

$$p^{2} = \left(\sqrt{q^{2} - \frac{r^{2}}{x^{2}}}\right)^{2}$$

$$p^{2} = q^{2} - \frac{r^{2}}{x^{2}}$$

$$p^{2}x^{2} = q^{2}x^{2} - r^{2}$$

$$r^{2} = q^{2}x^{2} - p^{2}x^{2}$$

$$r^{2} = x^{2}(q^{2} - p^{2})$$

$$x^{2} = \frac{r^{2}}{q^{2} - p^{2}}$$

$$\therefore x = \pm \sqrt{\frac{r^{2}}{q^{2} - r^{2}}}$$

#### Exercise 12 Date:.....

Make the variable shown in brackets the subject of the formula in each case.

$$1. \quad d = \sqrt{\frac{4h}{5}} \tag{h}$$

$$2. \quad x = \sqrt{\frac{a - y}{b}} \tag{y}$$

3. 
$$r = \sqrt{\frac{t-3}{9-t}}$$
 (t)

$$4. \quad d = \sqrt{\frac{6}{x} - \frac{y}{2}} \tag{x}$$

$$5. \quad t = \sqrt{\frac{pq}{2} - r^2 q} \tag{q}$$

| _ |                                                                                           |
|---|-------------------------------------------------------------------------------------------|
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   | Exercise 13 Date:                                                                         |
|   | Make the variable shown in brackets the                                                   |
|   | subject of the formula in each case.                                                      |
|   | $1.  T = 2\pi \sqrt{\left(\frac{l}{g}\right)} \tag{l}$                                    |
|   | 2. $2p = q + \sqrt{q^2 + r}$ (r)                                                          |
|   | $3.  t = \sqrt{\frac{tk - h}{k - h}} \tag{k}$                                             |
|   | $\sqrt{\frac{k-n}{2(\sqrt{x^2+m})}}$                                                      |
|   | 4. $y = \frac{2(\sqrt{x + m})}{3N}$ (x)                                                   |
|   | 4. $y = \frac{2(\sqrt{x^2 + m})}{3N}$ (x)<br>5. $d = \sqrt[3]{\frac{P + k^2}{Q - P}}$ (P) |
|   | 6. $x = q + \sqrt{(y^2 + z^2)}$ (y)                                                       |
|   | 6. $x = q + \sqrt{(y^2 + z^2)}$ (y)<br>7. $w^2 = \sqrt{\frac{m^2 - n}{r}} - v$ (n)        |
|   | ν ΄                                                                                       |

| <br>Exercise 14 Date:                                                                             |
|---------------------------------------------------------------------------------------------------|
| <br>1. If $T = \sqrt{\frac{p-r}{p+r}}$ , find                                                     |
| <br>(a) $r$ in terms of $p$ and $T$                                                               |
| <br>(b) The value of $r$ , when $T = 3$ and                                                       |
| <br>p = 10                                                                                        |
| <br>2. Given that $S = k\sqrt{m^2 + n^2}$                                                         |
| <br>(i) Make $m$ the subject of the relation<br>(ii) If $S = 12.2$ , $k = 0.02$ and $n = 1.1$ ,   |
| <br>find correct to the nearest whole                                                             |
| <br>number, the positive value of $m$ .                                                           |
| <br>3. Make $r$ the subject of the formulae                                                       |
| <br>$V = mg\sqrt{(1-r^2)}$ . Hence, find the value of $r$ when $V = 15$ , $m = 20$ and $g = 10$ . |
| <br>$\frac{\text{of } r \text{ when } r = 13, m = 20 \text{ and } g = 10.}{}$                     |
| <br>                                                                                              |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
| <br>                                                                                              |
| <br>                                                                                              |
| <br>                                                                                              |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exercise 15 Date:                                               |  |
|-----------------------------------------------------------------|--|
| 1. (i) Make $h$ the subject of the formula,                     |  |
|                                                                 |  |
| $1 \ k^2 + a^2$                                                 |  |
| $\frac{1}{n} = \sqrt{\frac{h}{hg}}$                             |  |
| $\sqrt{}$                                                       |  |
| (ii) If $n = \frac{8}{5}$ , $a = 3$ , $h = 2$ , $g = 32$ , find |  |
| the value of $k$ .                                              |  |
| the value of n.                                                 |  |
| 2 (: 1 1 :                                                      |  |
| 2. Given the relation                                           |  |
| $T = \sqrt{\frac{u}{1-1}}$                                      |  |
| $I = \begin{bmatrix} 1 & 1 \end{bmatrix}$                       |  |
| $T = \sqrt{\frac{1}{f} + \frac{1}{g}}$                          |  |
| (i) Make $g$ the subject of the relation                        |  |
| (ii) Find $g$ when $T = 3$ , $f = 4$ and                        |  |
| u = 5.                                                          |  |
| u=5.                                                            |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |
|                                                                 |  |

| _ |   |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   | · |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |

| Exercise 16 Date:                                                                   |  |
|-------------------------------------------------------------------------------------|--|
| 1. If $p = \frac{3}{5} \sqrt{\frac{q}{r}}$ , express $q$ in terms of $p$ and        |  |
| r.                                                                                  |  |
|                                                                                     |  |
| 2. If $T = WP[M^2 - (M - S)^2]$ , express $M$ in terms of $T$ , $W$ , $P$ and $S$ . |  |
|                                                                                     |  |
| 3. (i) Make $q$ the subject of the relation.                                        |  |
| $r = \frac{f}{2} + \left(\frac{f^2}{4} + q^2\right)^{\frac{1}{2}}$                  |  |
| (ii) Find, correct to <b>3</b> significant figures,                                 |  |
| the positive value of $q$ when $f = 4$                                              |  |
| and $r=5$                                                                           |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |

|   | <del></del>                                          |
|---|------------------------------------------------------|
|   |                                                      |
|   |                                                      |
|   |                                                      |
|   |                                                      |
| _ |                                                      |
|   |                                                      |
|   |                                                      |
|   |                                                      |
|   |                                                      |
|   |                                                      |
|   |                                                      |
|   | CASE 4: OTHER FORMS                                  |
|   | Example 5                                            |
|   | If $V = \pi r^2 h$ and $S = 2\pi r h$ , express V in |
|   | terms of $r$ and $S$ .                               |
|   |                                                      |
|   | Solution                                             |
|   | Solution $V = \pi r^2 h \dots (1)$                   |
|   | $S = 2\pi rh$                                        |
|   | $\Rightarrow h = \frac{S}{2\pi r}(2)$                |
|   | ZHT                                                  |

| Eliminating <i>h</i>                                                                                      |  |
|-----------------------------------------------------------------------------------------------------------|--|
| _                                                                                                         |  |
| Put (2) into (1)                                                                                          |  |
| $\Rightarrow V = \pi r^2 \left( \frac{S}{2\pi r} \right)$                                                 |  |
| $\Rightarrow V = \pi r^2 \left(\frac{s}{2\pi r}\right)$ $= \frac{rs}{2}$                                  |  |
| 2                                                                                                         |  |
| Example 6                                                                                                 |  |
| If $p = kq$ and $r = \frac{mk}{eq}$ , express $r$ in terms of $m$ , $p$ , $e$ and $q$ .                   |  |
| m, p, e and $q$ .                                                                                         |  |
| <b>Solution Note:</b> The final answer must be without <i>k</i> .                                         |  |
| <b>Note:</b> The final answer must be without k.                                                          |  |
| p = kq                                                                                                    |  |
| $\Rightarrow k = \frac{p}{q}(1)$                                                                          |  |
| $r = \frac{mk}{eq} \tag{2}$                                                                               |  |
| Put (1) into (2)                                                                                          |  |
| $\Rightarrow r = \frac{m(\frac{p}{q})}{eq}$                                                               |  |
| → r = eq                                                                                                  |  |
| $r = \frac{mp}{eq^2}$                                                                                     |  |
| •                                                                                                         |  |
| Exercise 17 Date:                                                                                         |  |
| 1. If $u = \frac{1}{2b+3}$ and $u = \frac{1}{d-2}$ , express $u$ in terms of $u$ .                        |  |
|                                                                                                           |  |
| 2. If $V = \frac{4}{3}\pi r^3$ and $S = 4\pi r^2$ , express $V$ in                                        |  |
| terms of $S$ and $\pi$ .                                                                                  |  |
| 3. Given that $p = x - \frac{1}{x}$ and $q = x^2 + \frac{1}{x^2}$ ,                                       |  |
| express $q$ in terms of $p$ .                                                                             |  |
| 4. Given that $a = bc$ and $n = \frac{mk}{r}$ ,                                                           |  |
| 4. Given that $a = bc$ and $n = \frac{mk}{ec}$ ,<br>(i) express $k$ in terms of $a$ , $b$ , $e$ , $m$ and |  |
| n;                                                                                                        |  |
| (ii) find, correct to <b>three</b> significant figures, the value of $k$ , when $a = \frac{1}{2}$ ,       |  |
| b = -4, $e = 3$ , $m = 7$ and $n = -5$ .                                                                  |  |
|                                                                                                           |  |
|                                                                                                           |  |
|                                                                                                           |  |
|                                                                                                           |  |
|                                                                                                           |  |

| <br>                                                                                                     |
|----------------------------------------------------------------------------------------------------------|
| <br>                                                                                                     |
|                                                                                                          |
|                                                                                                          |
|                                                                                                          |
| <br>                                                                                                     |
|                                                                                                          |
|                                                                                                          |
|                                                                                                          |
| <br>                                                                                                     |
| <br>                                                                                                     |
| <br>                                                                                                     |
| <br>                                                                                                     |
| <br>Exercise 18 Date:                                                                                    |
| <br>1. $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ and $d = u + v$ .                                       |
| <br><ul><li>(i) Express d in terms of f and u</li><li>(ii) Find the value of d, when f = 6 and</li></ul> |
| <br>u = 6.5                                                                                              |
| <br>$(x,y)^2$                                                                                            |
| <br>2. If $\left(\frac{x+y}{n-1}\right)^2 = p$ and $2S = n(y+x)$ ,                                       |
| express $S$ in terms of $n$ and $p$ only                                                                 |
| <br>3. If $\frac{l+a}{n-1} = d$ and $2S = n(a+l)$ , express $S$                                          |
| <br>in terms of $n$ and $d$ .                                                                            |

| <br>            |
|-----------------|
| <br>            |
|                 |
| <br><del></del> |
| <br>            |
| <br>            |
| <br>            |
| <br>            |
| <br>            |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |
| <br>            |
|                 |
| <br>            |
| <br>            |
|                 |

|             | Exercise 19 Date:                                                                             |
|-------------|-----------------------------------------------------------------------------------------------|
|             | 1. Make R the subject of $p = \frac{m}{R^2} + k$                                              |
|             | K-                                                                                            |
|             | $\sqrt{r-a}$                                                                                  |
|             | 2. Given the relation $A = \sqrt{\frac{x-a}{x+a}}$                                            |
|             | a. Express $a$ in terms of $A$ and $x$                                                        |
|             | b. Find the value of $a$ , if $x = 2$ and                                                     |
|             | b. Find the value of $a$ , if $x = 2$ and $A = 3$ .                                           |
|             | A=5.                                                                                          |
|             |                                                                                               |
|             | 3. In the relation $t = m\sqrt{n^2 + 4r}$ :                                                   |
|             | (i) Make <i>n</i> the subject of the relation;                                                |
|             | (ii) Find the positive value of $n$ when                                                      |
|             | t = 25, m = 5  and $r = 4$ .                                                                  |
|             |                                                                                               |
|             | 4. Make t the subject in $\frac{q}{m} = \sqrt[3]{\frac{r}{a} - \frac{a}{t^2}}$                |
|             | $m = \sqrt{a}$ $t^2$                                                                          |
|             |                                                                                               |
|             | 5.                                                                                            |
|             | (a) Make the variable shown in                                                                |
|             | brackets the subject of the formula                                                           |
|             | in each case.                                                                                 |
|             | (i) $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ (c)<br>(ii) $m = \frac{q^{-1}}{\sqrt[3]{x-1}}$ (x) |
|             | $\begin{array}{ccc} (1) & \lambda = & 2a & (C) \end{array}$                                   |
|             | (ii) $m = \frac{q}{\sqrt[3]{r+1}} $ (x)                                                       |
|             | \(\sigma - 1 \)                                                                               |
|             | (iii) $c = a + \sqrt{\frac{b-y}{d}}$ (y)                                                      |
|             | V u                                                                                           |
|             | (b) The tangent $t$ of the angle between                                                      |
|             | two straight lines with gradient $m_1$                                                        |
|             | and $m_2$ is given by                                                                         |
|             | $m_1 - m_2$                                                                                   |
|             | $t = \frac{m_1^ m_2^-}{1 + m_1 m_2}$                                                          |
|             | (i) Find $t$ when $m_1 = 3$ and                                                               |
|             | $m_2 = \frac{1}{2}$ .                                                                         |
|             | (ii) Make $m_2$ the subject of the                                                            |
|             | formula.                                                                                      |
|             | (iii) If $t = 0.5$ and $m_1 = 4$ , find                                                       |
|             |                                                                                               |
|             | $m_2$ .                                                                                       |
|             | 6. In a certain electrical circuit the voltage                                                |
|             | V, the total current I and the three                                                          |
|             | resistances $R_1$ , $R_2$ and $R_3$ are connected                                             |
|             | by the following relations                                                                    |
|             |                                                                                               |
|             | $V = I\left(\frac{R_1 R_2}{R_1 + R_2} + R_3\right).$                                          |
|             | (a) Calculate $V$ , if $I=0.5$ when $R_1=4$ ,                                                 |
|             | $R_2 = 6$ and $R_3 = 10$                                                                      |
|             | (b) Calculate $R_3$ , if $I = 0.5$ when $R_1 = 4$ ,                                           |
|             | $R_2 = 6$ and $V = 10$                                                                        |
|             | (c) Make $R_1$ the subject of the formula.                                                    |
|             | , , , , , , , , , , , , , , , , , , , ,                                                       |
| <del></del> |                                                                                               |
|             |                                                                                               |

#### **LINEAR EQUATIONS Solving Linear Equations in One Variable** Example 1 Solve the following. 1. x + 7 = 92. x - 2 = 43. 8x - 5 = 22 - 4xSolution... 1. x + 7 = 9x = 9 - 7x = 22. x - 2 = 4x = 4 + 2x = 63. 8x - 5 = 22 - 4x8x + 4x = 22 + 512x = 27Exercise 1 Date:..... Solve: 1. x + 7 = 152. x - 2 = 93. 4x - 7 = 294. 8x - 5 = 75. 3x - 4 = 146. 2x + 3 = 15 - x7. 8x - 5 = 22 - 4x8. 3x + 8 = 7x - 89. 15x - 4 = 10 - 3x $10.\ 22x - 8 = 10 - 5x$ 11. 3r + 2 = 5r - 1

| Exercise 2               | Date: |                                    |
|--------------------------|-------|------------------------------------|
| Solve:                   |       |                                    |
| 1. $4x + 3 = 11$         |       |                                    |
| 2. $7 - 3n = 11n + 2$    | )     |                                    |
| $3. \ 11x + 15 = 3x -$   |       |                                    |
|                          |       |                                    |
| 4.  5x + 4 = 19 + 2x     |       |                                    |
| 5.  2 - x = 5x + 11      |       |                                    |
| 6. $5 - 2x = 3x - 19$    | )     |                                    |
| 7. $4x + 3 = 2 + 6x$     |       |                                    |
| 8. $4x + 3 = 7 - x$      |       |                                    |
| 9. $3x + 5 = 8 - x$      |       |                                    |
|                          | •     |                                    |
| $10. \ 11x - 5 = 6x - 3$ |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       |                                    |
|                          |       | Exercise 3 Date:                   |
|                          |       | Find the truthset of the following |
|                          |       | 1. $4x + 3 = 23$                   |
|                          |       | 2. 8x - 15 = 6x + 2                |
|                          |       | $3. \ 3x - 4 = 14$                 |
|                          |       |                                    |
|                          |       | 4.  8 - 8x = -9x                   |
|                          |       | 5.  13x - 12 = 5x + 60             |
|                          |       | 6. $3x + 1 = 2x + 6$               |
|                          |       | 7. $9x + 13 = 6x + 10$             |
|                          |       | $8. \ 8x + 9 = 6x + 8$             |
|                          |       | 9. $6x + 6 = 3x + 5$               |
|                          |       |                                    |
|                          |       | 10. $7x + 5 = 5x + 1$              |

356

| <del></del> |                                    |
|-------------|------------------------------------|
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
| <del></del> |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |
| <del></del> |                                    |
|             |                                    |
|             |                                    |
|             | Exercise 4 Date:                   |
| <del></del> |                                    |
|             | Find the truthset of the following |
|             | 1. $2(2x+3)=2+1$                   |
|             | 2. $5(p-4) = 3(p+2)$               |
|             | 3. $3(2x-4) = 4(x+7)$              |
|             | J. 3(4x = 4) = 4(x + 1)            |
|             | 4. $6(k-8) = 78$                   |
|             | 5. $2(3x - 7) = 13$                |
|             | 6. $3(x+4) = 2(4x-1)$              |
|             | 7  5(x+1) = 4(x+2)                 |
|             | 7. $5(x+1) = 4(x+2)$               |
|             | 8. $8(x+5) = 10(x+3)$              |
|             | 9. $7(x+2) = 6(x+3)$               |
|             | $10. \ p = 2(p-3)$                 |
|             | 10. p - 2(p 3)                     |

357

| <del></del> |                                                      |
|-------------|------------------------------------------------------|
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
| <del></del> |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             |                                                      |
|             | Exercise 5 Date:                                     |
|             |                                                      |
|             | Find the solution set of the following               |
|             | 1. $p+3=3(p-5)$                                      |
|             | 2.  1 - 2(3x) = 2x                                   |
|             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|             | 3. $3(x+4) = 2(4x-1)$                                |
|             | 4. $2(q-3)-(q-2)=5$                                  |
|             | 5. $4+2(2-x)=3-2(5-x)$                               |
|             | 6. $5(3x + 8) - 10 = 0$                              |
|             |                                                      |
|             | 7. $3(2z-7)-2(z-3)=-9$                               |
|             | 8. $10(x+4) - 7(x-3) = 100$                          |
|             | 9. $3(3x+1) - 8(2x-3) + 1 = 0$                       |
|             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| <del></del> | $10. \ 7(5x - 3) - 10 = 2(3x - 5) - 3(5 - 7x)$       |

| <del></del> |                                                                               |
|-------------|-------------------------------------------------------------------------------|
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             |                                                                               |
|             | _ , _                                                                         |
|             | Example 2                                                                     |
|             |                                                                               |
|             | Find the solution set for each of the                                         |
|             | C. H                                                                          |
|             | following.                                                                    |
|             | l . 1. " . 1                                                                  |
|             | 1. $\frac{1}{x}(x-1) - \frac{1}{x}(x-2) = 4$                                  |
|             | 1 - 2 · 1 3 · 1                                                               |
|             | 1. $\frac{1}{2}(x-1) - \frac{1}{3}(x-2) = 4$<br>2. $3(y-4) + \frac{y}{2} = 9$ |
|             | $(2. 3(y-4)+\frac{1}{2}=9)$                                                   |
|             | 1 2                                                                           |

### Solution...

1. 
$$\frac{1}{2}(x-1) - \frac{1}{3}(x-2) = 4$$
  
Multiply through with the L.C.M  
 $\Rightarrow 6 \times \frac{1}{2}(x-1) - 6 \times \frac{1}{3}(x-2) = 4 \times 6$   
 $3(x-1) - 2(x-2) = 24$   
 $3x - 3 - 2x + 4 = 24$ 

Group like terms  $\Rightarrow 3x - 2x = 24 + 3 - 4$ 

$$\Rightarrow x = 23$$
$$\{x: x = 23\}$$

2.  $3(y-4) + \frac{y}{2} = 9$ 

Multiply through with the L.C.M  $2 \times 3(y-4) + 2 \times \frac{y}{2} = 9 \times 2$  6(y-4) + y = 18 6y - 24 + y = 18

| Group like terms $6y + y = 18 + 24$ $7y = 42$ $\frac{7y}{7} = \frac{42}{7}$ $y = 6$ $\{y: y = 6\}$ |   |
|----------------------------------------------------------------------------------------------------|---|
| Exercise 6 Date:                                                                                   |   |
|                                                                                                    | • |

| Exercise 7 Date:                                                                  |  |
|-----------------------------------------------------------------------------------|--|
| Find the truthset for each of the following                                       |  |
| 1. $\frac{x}{2} + 3 = 8$                                                          |  |
| 2 1 0 - 0                                                                         |  |
| 2. $\frac{1-p}{3} = 4$                                                            |  |
| y+1                                                                               |  |
| 3. $\frac{y+1}{5} = 2$ 4. $\frac{p-3}{5} = 3$ 5. $\frac{x-2}{4} = \frac{2x+5}{4}$ |  |
| $A = \frac{p-3}{2} - 3$                                                           |  |
| 4. $\frac{1}{5} = 3$                                                              |  |
| 5. $\frac{x-2}{}=\frac{2x+5}{}$                                                   |  |
| $\frac{4}{2y-1}$                                                                  |  |
| 6. $\frac{2y-1}{3} = 7$                                                           |  |
| $\frac{15-x}{2}$                                                                  |  |
| 7. $\frac{15-x}{2} = 3 - 2x$                                                      |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
| <del></del>                                                                       |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
| <del></del>                                                                       |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |

361

| Exercise 8 Date:                                                                       |  |
|----------------------------------------------------------------------------------------|--|
| Find the solution set for each of the                                                  |  |
| following                                                                              |  |
| 1 $A(x, 1) + 2(x, 12) - F(x, 4)$                                                       |  |
| 1. $4(y-1) + 3(y+2) = 5(y-4)$                                                          |  |
| 2. $\frac{2x+3}{3} = 8$                                                                |  |
| x+5 7                                                                                  |  |
| 2. $\frac{2x+5}{3} = 8$<br>3. $\frac{x+5}{x} = \frac{7}{3}$<br>4. $\frac{n-8}{2} = 11$ |  |
| $A = \frac{n-8}{11} - 11$                                                              |  |
| T. 2 - 11                                                                              |  |
| 5. $2 = \frac{1}{1}$                                                                   |  |
| 5. $2 = \frac{1}{u-1}$ 6. $\frac{9y+16}{6} = \frac{113}{12}$                           |  |
| 6. $\frac{39+10}{6} = \frac{210}{12}$                                                  |  |
| 7. $\frac{5}{10} = \frac{3}{100}$                                                      |  |
| 7. $\frac{5}{w} = \frac{3}{w+1}$                                                       |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
| <del></del>                                                                            |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |

| Exercise 9 Date:                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Find the solution set for each of the                                                                                               |  |
| following                                                                                                                           |  |
| 1 1                                                                                                                                 |  |
| following  1. $\frac{1}{\frac{2+x}{2+x}} = \frac{1}{\frac{5-x}{5-x}}$ 2. $\frac{2x+3}{2x+3} = \frac{4x-2}{5x-2}$                    |  |
| 2. $\frac{2x+3}{4} = \frac{4x-2}{6}$                                                                                                |  |
| 2. 4 6                                                                                                                              |  |
| $3.  \frac{5x-7}{6} + \frac{2x-3}{4} = -\frac{2}{3}$                                                                                |  |
| 4 3 2 2                                                                                                                             |  |
| 4. $\frac{1}{x} - \frac{1}{x+1} = 0$                                                                                                |  |
| $5 \frac{3x}{4} + 2 - \frac{x-2}{2}$                                                                                                |  |
| 4. $\frac{3}{x} - \frac{2}{x+1} = 0$<br>5. $\frac{3x}{5} + 2 = \frac{x-2}{3}$<br>6. $\frac{3x-1}{5} - \frac{2x-1}{5} = \frac{1}{5}$ |  |
| $6.  \frac{3x-1}{6} - \frac{2x-1}{3} = \frac{1}{4}$                                                                                 |  |
| 2 2                                                                                                                                 |  |
| 7. $\frac{3}{4+p} = \frac{2}{1+p}$                                                                                                  |  |
| r                                                                                                                                   |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
| <del></del>                                                                                                                         |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
| <del></del>                                                                                                                         |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
| <u> </u>                                                                                                                            |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
| <del></del>                                                                                                                         |  |
|                                                                                                                                     |  |

| Exercise 10 Date:                           |   |
|---------------------------------------------|---|
|                                             |   |
| Find the truthset for each of the following |   |
|                                             |   |
| equations.                                  |   |
|                                             |   |
| 1. $8(x-2) - 9(x-4) = 13$                   |   |
|                                             |   |
| 2. $2(x-1) - 7(3x-2) = 7(x-4)$              |   |
|                                             |   |
| 3. $3(6+7y) + 2(1-5y) = 42$                 |   |
|                                             |   |
| 4. $3(x-2) - 5(1-2x) = 15$                  |   |
| 5. $5(3x-1)-4(x+3)=9x+5$                    |   |
|                                             |   |
| 6. $5(6x + 2) - 7(3x - 5) - 72 = 0$         |   |
|                                             |   |
| 7. $-3(x-2) - 5(3x-2) + 74 = 0$             |   |
|                                             |   |
| 8. $-2(x+3) - 6(2x-4) + 108 = 0$            |   |
|                                             |   |
| 9. $10(x+4) - 9(x-3) - 1 = 8(x+3)$          |   |
| 10. $(6-x)-(x-5)-(4-x)=-\frac{x}{2}$        |   |
|                                             | 1 |

364

| <del></del> |                                                                                                                                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
| <u> </u>    |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
| <u> </u>    |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                     |
|             | Exercise 11 Date:                                                                                                                                                                                                                                   |
|             | Solve the following.                                                                                                                                                                                                                                |
|             | Solve the following.                                                                                                                                                                                                                                |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$                                                                                                                                                                                         |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$                                                                                                                                                                                         |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$                                                                                                                                            |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$                                                                                                                                            |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$<br>3. $\frac{4x-3}{2} = \frac{8x-10}{8} + 2\frac{3}{4}$                                                                                    |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$<br>3. $\frac{4x-3}{2} = \frac{8x-10}{8} + 2\frac{3}{4}$                                                                                    |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$<br>3. $\frac{4x-3}{2} = \frac{8x-10}{8} + 2\frac{3}{4}$<br>4. $\frac{1}{3}(x+3) - 2(x-5) = 4\frac{1}{3}$                                   |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$<br>3. $\frac{4x-3}{2} = \frac{8x-10}{8} + 2\frac{3}{4}$<br>4. $\frac{1}{3}(x+3) - 2(x-5) = 4\frac{1}{3}$<br>5. $2x - \frac{4}{5}(3-x) = 2$ |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$<br>3. $\frac{4x-3}{2} = \frac{8x-10}{8} + 2\frac{3}{4}$<br>4. $\frac{1}{3}(x+3) - 2(x-5) = 4\frac{1}{3}$<br>5. $2x - \frac{4}{5}(3-x) = 2$ |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$<br>3. $\frac{4x-3}{2} = \frac{8x-10}{8} + 2\frac{3}{4}$<br>4. $\frac{1}{3}(x+3) - 2(x-5) = 4\frac{1}{3}$<br>5. $2x - \frac{4}{5}(3-x) = 2$ |
|             | Solve the following.<br>1. $5(a-5) - \frac{1}{2}(2a+6) = 4$<br>2. $\frac{x}{7} - 1 = \frac{2x-3}{3} + 4$<br>3. $\frac{4x-3}{2} = \frac{8x-10}{8} + 2\frac{3}{4}$<br>4. $\frac{1}{3}(x+3) - 2(x-5) = 4\frac{1}{3}$                                   |

| ·           | · <u></u> |
|-------------|-----------|
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
| <del></del> |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
| <del></del> |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |
|             |           |

| Exercise 12 Date:                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Find the solution set of the following.                                                                                              |  |
|                                                                                                                                      |  |
| 1. $0.2x - 3 = 0.5x$                                                                                                                 |  |
| 2. $0.3x - 2(x + 2) = 3(2 - x)$                                                                                                      |  |
| $r \pm 1$ $r = 2$                                                                                                                    |  |
| 3. $\frac{x+1}{3} - \frac{x-2}{5} = 2$ 4. $\frac{2}{3} + \frac{5}{6} = \frac{x}{2}$ 5. $\frac{5}{3} \div \frac{3}{y} = \frac{40}{9}$ |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                 |  |
| 4. $\frac{2}{1} + \frac{3}{1} = \frac{3}{1}$                                                                                         |  |
| 3 6 2                                                                                                                                |  |
| $5.  \stackrel{5}{\div} \stackrel{3}{\div} = \stackrel{40}{-}$                                                                       |  |
| $3 \cdot y = 9$                                                                                                                      |  |
| $6  ^{m-3} + ^{m+4} - 7$                                                                                                             |  |
| 6. $\frac{m-3}{4} + \frac{m+4}{3} = -7$                                                                                              |  |
| $\frac{3x-2}{4}$                                                                                                                     |  |
| $7.  \frac{3x-2}{5} + \frac{x+2}{10} = 4$                                                                                            |  |
| $(x-2)^{(5-x)}$                                                                                                                      |  |
| 8. $2\left(\frac{5-x}{3}\right) + 3 = -3\left(\frac{x-2}{2}\right)$                                                                  |  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                              |  |

| <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | Exercise 13 Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Find the solution set of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Find the solution set of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Find the solution set of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$                                                                                                                                                                                                                                                                                                                                                                                 |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{1\frac{1}{2}}{2\frac{2}{5}} = \frac{x}{96}$                                                                                                                                                                                                                                                                                                                           |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{1\frac{1}{2}}{2\frac{2}{5}} = \frac{x}{96}$                                                                                                                                                                                                                                                                                                                           |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{1\frac{1}{2}}{2\frac{2}{5}} = \frac{x}{96}$                                                                                                                                                                                                                                                                                                                           |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{1\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$                                                                                                                                                                                                                                                       |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$                                                                                                                                                                                                                            |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$                                                                                                                                                                                                                            |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$                                                                                                                                                                                       |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x-3)$                                                                                                                                                                |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x-3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$                                                                                                                        |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x-3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$                                                                                                                        |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{1\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x-3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$ 10. $2(x-3(x+4)) = 8 - 5(x+1) - x$                                                                                    |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x-3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$ 10. $2(x-3(x+4)) = 8 - 5(x+1) - x$ 11. $2(x-3(x+2)) - 5 = 3x - 1$                                                      |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{1\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x-3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$ 10. $2(x-3(x+4)) = 8 - 5(x+1) - x$                                                                                    |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x - 3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$ 10. $2(x-3(x+4)) = 8 - 5(x+1) - x$ 11. $2(x-3(x+2)) - 5 = 3x - 1$ 12. $\frac{1}{2}(\frac{x}{3}+1) = \frac{x}{4} - 2$ |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x - 3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$ 10. $2(x-3(x+4)) = 8 - 5(x+1) - x$ 11. $2(x-3(x+2)) - 5 = 3x - 1$ 12. $\frac{1}{2}(\frac{x}{3}+1) = \frac{x}{4} - 2$ |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x - 3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$ 10. $2(x-3(x+4)) = 8 - 5(x+1) - x$ 11. $2(x-3(x+2)) - 5 = 3x - 1$ 12. $\frac{1}{2}(\frac{x}{3}+1) = \frac{x}{4} - 2$ |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x-3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$ 10. $2(x-3(x+4)) = 8 - 5(x+1) - x$ 11. $2(x-3(x+2)) - 5 = 3x - 1$                                                      |
|             | Find the solution set of the following  1. $\frac{2}{3}(3x-5) - \frac{3}{5}(2x-3) = 3$ 2. $\frac{1}{5x} + \frac{1}{x} = 3$ 3. $\frac{\frac{1}{2}}{2\frac{2}{3}} = \frac{x}{96}$ 4. $3(x-2) - 5(1-2x) = 15$ 5. $\frac{3x-8}{2} = \frac{6x-4}{5} + 1$ 6. $3(2x-3) - 2(1-2x) = 29$ 7. $\frac{3x-8}{2} = \frac{6x+1}{5}$ 8. $6x + 17 = 5(2x - 3)$ 9. $\frac{x}{3} + \frac{5}{2}x = 3 - 2$ 10. $2(x-3(x+4)) = 8 - 5(x+1) - x$ 11. $2(x-3(x+2)) - 5 = 3x - 1$ 12. $\frac{1}{2}(\frac{x}{3}+1) = \frac{x}{4} - 2$ |

| <br> |
|------|
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |

| <br>Exercise 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date:                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Solve the followin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| <br>1. $3(x-6) = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
| <br>2. $2(x-4)+27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| 3. $4x = x - (x - x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
| 4. $5x - 3(x - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| <br>5. $7 - (x + 1) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` ,                                               |
| 6. $5(2x-1)-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2(x-8) - (x-1) = 0                                |
| <br>8. $3x + 2(x + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                 |
| <br>, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (x + 3) + 4 - x = 0 $10,000 - x) = 550$           |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000 - x) = 330                                 |
| <br>11. $\frac{3x-1}{\frac{7}{2}} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |
| <br>$12. \frac{5}{2x-1} = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |
| $13. \frac{\frac{2x-1}{3x-1}}{\frac{2x+7}{4} - \frac{x+1}{3}} = \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
| <br>3x-1 $3x+1$ $3x+1$ $3x+1$ $3x+1$ $3x+1$ $3x+1$ $3x+1$ $3x+1$ $3x+1$ $3x+1$ $3x+1$ $3x+1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
| <br>14. $\frac{2x+7}{4} - \frac{x+1}{3} = \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-</u>                                          |
| 15. $\frac{3x+2}{5} - \frac{2x+5}{3} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x + 3                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 1                                               |
| <br>$16. \frac{1}{x} + \frac{1}{2x} - \frac{1}{3x} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| <br>17. $1\frac{2}{3}(x+1) = x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x + 5\frac{2}{3}$                                |
| $18. \frac{2}{y+2} - \frac{y}{2-y} = \frac{y^2}{y^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2+4                                               |
| <br>$y+2$ $2-y$ $y^2$ $4r-3$ $2r-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-4                                               |
| <br>$19. \frac{4r-3}{6r+1} = \frac{2r-1}{3r+4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(x+1)^2 = 5x + 10$                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(x-3)^2 = 5x + 10$                               |
| <br>22. $2(x+1)^2 - (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2 = ($ | $(x-2)^2 = x(x-3)$                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
| Eveneiro 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Data                                              |
| Exercise 15 Solve:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date:                                             |
| <br>1. $5x - 7 - 8x =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4x - 17 - 6x                                      |
| <br>2. $6(5+4x)-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| 3. $3 - \frac{4}{x} = 6\left(-\frac{4}{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                                                 |
| <br>$4.  \frac{4}{9-2x} + 3 = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| <br>5. $\frac{1}{2}(1-x)-\frac{1}{2}(1-x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(2+x) + \frac{1}{4}(3-x) = 1$                    |
| 6. $4 - \frac{x-2}{2} = x +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 0                                               |
| <br>. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| <br>9 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(2x+3) - \frac{1}{3}(1-3x) = -1$                 |
| <br>8. $\frac{1}{7}(2y-4)-\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(2y - 26) = 5 - \frac{1}{2}(3y + 5)$             |
| 9. $\left(\frac{x}{14} + 3\frac{1}{2}\right)$ is ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vice $\left(\frac{x}{x} + 1^{\frac{2}{x}}\right)$ |
| <br>(11 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (21 3)                                            |
| <br>Find the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| 10. $\left(1 - \frac{1}{5}\right)$ is 3 le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ess than three times                              |
| <br>$\left(\frac{x}{2}-5\right)$ . Find t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the value of $x$ .                                |
| <br>11 4 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                 |
| <br>$\frac{11.}{2x+3} + \frac{1}{x-4} - \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4x^2 - 10x - 24$                                 |
| 12. $\frac{1}{x} + \frac{3}{x-1} = \frac{4}{x+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
| 11. $\frac{4}{2x+3} + \frac{5}{x-4} = \frac{4}{4}$ 12. $\frac{1}{x} + \frac{3}{x-1} = \frac{4}{x+1}$ 13. $\frac{3}{6x^2 - 2x + 1} - \frac{2x^2}{2x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{4m+7} = 0$                              |
| <br>$6x^2-2x+1$ $2x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4x+/                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |

14. 
$$\frac{x-1}{x+2} - \frac{19-22x}{x^2-x-6} = \frac{x+1}{x-3}$$
15. 
$$\frac{5}{6(x-3)} + \frac{7-x}{2(x^2+3x+9)} = \frac{5-2x-x^2}{81-3x^3}$$
16. 
$$\frac{4}{x} + \frac{4+4x}{x^2+4x} = \frac{-5}{x+4}$$

#### **WORD PROBLEM**

#### NOTE

### 1. Words Denoting Addition

sum More than
Plus Greater than
Gain Larger than
Increase Enlarge
Rise Grow
Expand Augment

#### 2. Words Denoting Subtraction

Difference Less than
Minus Smaller than
Lose Fewer than
Decrease Shorten
Drop Depreciate
Lower Diminish

### 3. Words Denoting Multiplication

Multiplied Double

Times Triple or treble
Product Quadruple
Twice Quintuple

### 4. Words Denoting Division

Divided by Ratio
Ouotient Half

#### Exercise 16 Date:.....

Write the following as a mathematical sentence.

- 1. The sum of two equal numbers is 7.
- 2. The sum of *y* and 3 is 71.
- 3. The sum of *m* and *n* is equal to the product of *m* and *n*.
- 4. 5 less than the number and the result is 7 times the number.
- 5. 11 more than  $\frac{1}{4}$  the number and the result is 8.

- 6. 2 more than 5 times the number is 3 less than 9 times the number.
- 7. When 13 is added to a certain number and the sum is multiplied by 5, the result is 90.
- 8. Two consecutive odd numbers are such that 3 times the smaller, subtracted from six times the bigger, give 102.

| <br> |  |
|------|--|
| <br> |  |
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
| <br> |  |
| <br> |  |
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |

#### Example 3

The sum of three consecutive odd numbers is 57. Find the numbers.

#### Solution...

Let *x* be the first odd number.

i.e. 
$$x, x + 2, x + 4$$
.

$$x + x + 2 + x + 4 = 57$$
  
 $3x + 6 = 57$   
 $3x = 51$   
 $x = 17$ 

∴ The numbers are 17, 19, 21.

#### Example 4

A man is twice as sold as his son. Five years ago, the ratio of their ages was 9: 4. Find the son's present age.

#### Solution...

Let the son's age = x $\therefore$  the man's age = 2x

Five years ago, The son's age was = x - 5The man's age was = 2x - 5The ratio of their ages in 5 years is given as 9:4.

$$(2x - 5): (x - 5) = 9: 4$$

$$\frac{2x - 5}{x - 5} = \frac{9}{4}$$

$$4(2x - 5) = 9(x - 5)$$

$$8x - 20 = 9x - 45$$

$$8x - 9x = -45 + 20$$

$$-x = -25$$

$$x = 25$$

∴ The son's age is 25 years.

#### Example 5

A T – shirt cost 5 times as much as a singlet. For GH¢800.00, a trader can buy 32 more singlets than T – shirts. How much does a T – shirt cost?

#### Solution...

Let the cost of a singlet =  $GH \notin x$  $\Rightarrow$  The cost of a T - shirt =  $GH \notin 5x$ 

Number of singlets that can be bought =  $\frac{800}{5x}$ 

If the number of singlets that can be bought is 32 more than the number of T – shirts,  $\frac{800}{x} = \frac{800}{5x} + 32$ 

Multiply through by x

$$x \times \frac{800}{x} = x \times \frac{160}{x} + x \times 32$$

$$800 = 1600 + 32x$$

$$32x = 640$$

$$x = 20$$

 $\therefore$  Cost of a T - shirt =  $5 \times 20 = GH \& 100.00$ 

#### Exercise 17

Date:....

- 1. The sum of two consecutive even numbers is 54. Find the numbers.
- 2. The sum of two consecutive odd numbers is 208. Find the numbers.
- 3. The sum of four consecutive odd numbers is 1112. Find the least of the four numbers.
- 4. Two consecutive integers are such that the greater added to twice the smaller gives 52. Find the numbers.
- 5. The cost of a cup of tea is t cents. The cost of a cup of coffee is (t + 5) cents. The total cost of 7 cup of tea and 11 cups of coffee is 2215 cents. Find the cost of one cup of tea.
- 6. Find the two consecutive integers such that three times the smaller integer added to two times the greater integer equals 42.
- 7. At a football match, the price of a child's ticket is \$2.50 less than the price of an adult ticket. There are 18500 adults and 2400 children attending the football match. The total amount paid for the tickets is \$320040. Find the price of an adult ticket.

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |

|             | Exercise 18 Date:                                       |
|-------------|---------------------------------------------------------|
|             | 1. Three quarters of a number added to                  |
|             | two and a half of that number gives 13.                 |
|             | Find the number.                                        |
| <del></del> | 2. The sum of 6 and one – third of $x$ is one           |
|             | more than twice $x$ . Find $x$ .                        |
|             | 3. Two positive numbers are in the ratio of             |
|             | 3 : 4. The sum of 3 times the first and 2               |
|             | times the second is 64. Find the smaller                |
|             | number. 4. If integer $x$ is divided by 7, the quotient |
|             | is 11 with remainder 1. Find the value of               |
|             | x.                                                      |
|             | 5. Awa is $m$ years old now and Fatou is $y$            |
|             | years older than Awa. If $(x - 5)$ years                |
|             | ago, Fatou was twice as old as Awa,                     |
|             | express $x$ in terms of $y$ and $m$ .                   |

373

| <br> |
|------|
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

| EX | ercise 19 Date:                                                                    |  |
|----|------------------------------------------------------------------------------------|--|
| 1. | Find three consecutive odd integers such that the sum of the last two is 15        |  |
|    | less than 5 times the first.                                                       |  |
| 2. |                                                                                    |  |
|    | In ten years' time Kofi will be three times as old as Kweku. How old are they      |  |
|    | now?                                                                               |  |
| 3. | If two angles of a triangle are equal and                                          |  |
| ο. | the third angle is three times either of<br>the other two angles, find the size of |  |
|    | each angle.                                                                        |  |
| 4. | The sum of three numbers is 81. The                                                |  |
|    | second number is twice the first, and the third number is six more than the        |  |
|    | second. Find the numbers.                                                          |  |
| 5  | A man walked 5 kilometers, then                                                    |  |
| J. | travelled a certain distance by Nissan                                             |  |
|    | Urvan bus, and twice as far by train. If the whole journey was 104 kilometers,     |  |
|    | how far did he travel by the bus?                                                  |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |
|    |                                                                                    |  |

|                                                                                                                                   | 4. Ama's age is two – thirds that of her elder sister. Four years ago Ama's age was half the sister's. How old is the sister?                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                   | 5. A bag contains some balls of which $\frac{1}{4}$ are red. Forty more balls of which 5 are red. If $\frac{1}{5}$ of all the balls are red, how many balls were there originally? |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
| <del></del>                                                                                                                       |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
| Exercise 20 Date:                                                                                                                 |                                                                                                                                                                                    |
| 1. The sum of a number, $\frac{3}{4}$ of the number                                                                               |                                                                                                                                                                                    |
| and $\frac{5}{8}$ of the number is 19. Find the                                                                                   |                                                                                                                                                                                    |
| number.                                                                                                                           |                                                                                                                                                                                    |
| <ol><li>Mrs. Augustina Jackson bought 6 plates<br/>and 10 drinking cups from a shop. A</li></ol>                                  |                                                                                                                                                                                    |
| plate cost her GH¢20.00 more than a drinking cup. If she spent GH¢1,080 altogether, how much did a plate and a drinking cup cost? |                                                                                                                                                                                    |
|                                                                                                                                   |                                                                                                                                                                                    |
| 3. A boy is three years younger than his sister. If his age three years ago was two                                               |                                                                                                                                                                                    |
| <ul><li>thirds of her age at that time. What are<br/>their present ages?</li></ul>                                                |                                                                                                                                                                                    |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exc | ercise 21 Date:                                                                                               |  |
|-----|---------------------------------------------------------------------------------------------------------------|--|
| 1.  | Sony is twice as Wale. Four years ago, he was four times as old as Wale. When                                 |  |
|     | will the sum of their ages be 66?                                                                             |  |
|     |                                                                                                               |  |
| 2.  | If $\frac{3}{2}$ of a number added to $\frac{5}{2}$ gives the                                                 |  |
|     | If $\frac{3}{4}$ of a number added to $\frac{5}{6}$ gives the same result as subtracting $\frac{7}{8}$ of the |  |
|     | number from $20\frac{1}{3}$ , find the number.                                                                |  |
|     | and the number.                                                                                               |  |
| 3.  | A man bought some shirts for                                                                                  |  |
|     | GH¢720.00. If each shirt was GH¢2.00 cheaper, he would have received 4 more                                   |  |
|     | shirts. Calculate the number of shirts                                                                        |  |
|     | bought.                                                                                                       |  |
| 4.  | A student plans to spend $\$200$ on $p$                                                                       |  |
|     | notebooks. But the price of the                                                                               |  |
|     | notebooks had increased by ₹10.00. As a result, the number of notebooks the                                   |  |
|     | students could buy was reduced by 1.                                                                          |  |
|     | Find the price of each notebook before                                                                        |  |
|     | the increase.                                                                                                 |  |
| 5.  | Two minibuses start from the same                                                                             |  |
|     | station and travel in opposite directions, along the same straight road. The first                            |  |
|     | bus travels at a speed of 72km/h, the                                                                         |  |
|     | second at 48km/h. in how many hours                                                                           |  |
|     | will they be 360km apart?                                                                                     |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     | <del>-</del>                                                                                                  |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |

| Exercise 22 | Date: |
|-------------|-------|
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |
|             |       |

1.

- (a) Bottles of water cost 25 cents each.
  - (i) Find the cost of 7 bottles in cents.
  - (ii) Write down an expression in *b* for the cost of *b* bottles in cents.
  - (iii) Change your answer to part (i) into dollars.
  - (iv) Write down an expression in *b* for the cost of *b* bottles in dollars.
- (b) The total cost, *T*, of *n* bars of chocolate is given by T = nc.
  - (i) Write c in terms of T and n.
  - (ii) What does *c* represent?
- (c) The average cost of a book is \$A.
  - (i) The total cost of 8 books is \$36, find the value of *A*.
  - (ii) One of the 8 books is removed. The cost of this book is \$6.60. Find the new value of *A*.
  - (iii) The total cost of x books is \$y. Write an expression for *A* in terms of *x* and *y*.
  - (iv) One of the *x* books is removed. The cost of this book is \$7. Write a new expression for *A* in terms of *x* and *y*.

- 2. In a school, there are 1000 boys and number of girls. The 48% of the total number of students that were successful in an examination was made up of 50% of the boys and 40% of the girls. Find the number of girls in the school.
- 3. Two tanks X and Y are filled to capacity with petrol. Tank X hold 600 litres more than tank Y. If 100 litres of petrol were pumped out of each tank, tank X would then contain 3 times as much as petrol as tank Y. Find the capacity of each tank.
- 4. With GH¢184, I can buy x packet of biscuits. If I can but two more packets of the same biscuit with GH¢230.00, find the value of *x*.
- Two cars travelled along the same road. The first car travelled at 45km/h for a certain time. The second car travelled at 80km/h for six minutes less than this time, but covered 55 more kilometers. For how long did the car travel?
- Three times the age of Felicia is four more than the age of Asare. In three years, the sum of their ages will be 30 years. Find their present ages.

7.

- (a) At a football match, the price of an adult ticket is \$ x and the price of a child ticket is \$ 2.50 less than the price of an adult. There are 18,500 adults and 2,400 children attending the football match. The total amount paid for the tickets is \$320,040. Find the price of an adult ticket.
- (b) In a shop, the price of a monthly magazine is \$ m and the price of a weekly magazine is \$ 0.75 less than the price of a monthly magazine. One day, the shop receives.
  - \$ 168 from selling monthly magazines.
  - \$ 207 from selling weekly magazines.

The total number of these magazines sold during this day is 100. Find the price of a monthly magazine. Show all your working.

### LINEAR INEQUALITIES

An inequality is a statement that shows that two algebraic expressions are not equal in a specific way, one expression being greater than or less than the other.

#### **INEQUALITY SYMBOLS**

| YMBOL | MEANING                     |
|-------|-----------------------------|
| <     | is less than                |
| ≤     | is less than or equal to    |
| >     | is greater than             |
| ≥     | is greater than or equal to |
|       |                             |

- 1.  $a < b \implies a$  is less than b
- 2.  $a \le b \implies a$  is less than or equal to *b*.
- 3.  $a > b \implies a$  is greater than b.
- 4.  $a \ge b \implies a$  is greater than or equal to b.

#### NOTE:

When both sides of an inequality are multiplied or divided by a negative number, the sign of the inequality changes.

i.e. if a > b then multiply through by -k

$$\Rightarrow -ka < -kb$$
Also if  $-ka \le b$ 

$$\frac{-ka}{-k} \ge \frac{b}{-k}$$

$$a \ge -\frac{b}{k}$$

### REPRESENTATION OF SOLUTION SET ON THE NUMBER LINE

(a) If x < k or x > k, where x is a variable and k is a constant, we use '0' an open circle to indicate that *k* is not included in the solution set. The number line for x < k and x > k are as follows:



(b) If  $x \le k$  or  $x \ge k$ , where x is a variable and k is a constant, we use ' $\bullet$ ' a dot to indicate that k is included in the solution set. The number line for  $x \le k$  or  $x \ge k$ are as follows:



#### Example 1

Determine the solution set of the following and illustrate the answer on the number

- 1. 2p + 4 < 16
- 2.  $\frac{21+x}{5} > x+1$ 3.  $\frac{2x+1}{5} \le \frac{5x-8}{4}$

#### Solution...

- 1. 2p + 4 < 162p < 16 - 42p < 12p < 6
  - ${p:p < 6}$



- 2.  $\frac{21+x}{5} > x+1$   $5 \times \frac{21+x}{5} > 5 \times x + 5 \times 1$ 
  - 21 + x > 4x + 5x - 5x > 5 - 21
  - -4x > -16

  - $\frac{-4x}{-4} < \frac{-16}{-4}$
  - x < 4

$${x: x < 4}$$



- - $4(2x+1) \le 3(5x-8)$  $8x + 4 \le 15x - 24$
  - $-7x \le -28$
  - $x \ge 4$



| Exercise 1 Date:  Determine the solution set of the following: | Exercise 2 Date:  Find the truthset of the following |
|----------------------------------------------------------------|------------------------------------------------------|
| 1. $3p + 7 < 16$                                               | 1. $x + 3 > 19 - 3x$                                 |
| 2. $3x - 13 > 26$                                              | 2. $5 - 2x > x + 2$                                  |
| 3. $-2-4x > -6$                                                | 3. $7x - 5 > 3(2 - 5x)$                              |
| 4. $3x - 1 \le 11x + 2$<br>5. $5t + 23 < 17 - 2t$              | 4. $3n + 23 < n + 41$<br>5. $2x - 6 \le 5(3 - x)$    |
| 6. $3x - 4 - 2(x + 1) < 3$                                     | $3.  2x - 0 \le 3(3 - x)$                            |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
| _                                                              |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |
|                                                                |                                                      |

| Find the solution set of each of the following inequalities and represent it on the number line.  1. $3x - 9 \ge 12(x - 3)$ 2. $5x - 3(x - 1) \ge 39$ |                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 3. $7x - 5 > 3(2 - 5x)$<br>4. $5(x - 4) < 3(12 - x)$<br>5. $(p - 1) - 3(1 - 2p) \ge 0$                                                                |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       | Exercise 4 Date:  Find the truthset of each of the following inequalities and represent it on the number line.  1. $3p > (7 + p) - 5$ |
|                                                                                                                                                       | 2. $-2+5-3x < 4x+7-2x$<br>3. $11-3(2z+1)-2(1-6z) < 0$<br>4. $3-4(1-z)+3(z-3) > 0$                                                     |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |
|                                                                                                                                                       |                                                                                                                                       |

|               | Exercise 5 Date:                                                                                              |
|---------------|---------------------------------------------------------------------------------------------------------------|
|               | Determine the solution set of each of the                                                                     |
|               | following.                                                                                                    |
|               | 1. $\frac{2x+1}{3} \le \frac{5x-8}{4}$                                                                        |
|               | 2 21+x 1                                                                                                      |
|               | $2. \frac{1}{5} > x + 1$                                                                                      |
|               | 2. $\frac{21+x}{5} > x+1$ 3. $\frac{1}{2}x + \frac{3}{4} < 2$ 4. $\frac{4}{5}x - \frac{3}{4}x < \frac{7}{15}$ |
|               | $4.  \frac{3}{4}x - \frac{3}{3}x < \frac{7}{3}$                                                               |
|               | 5 4 15                                                                                                        |
|               | $5. \ \frac{1}{2}(5x-4) < x + \frac{11}{24}$                                                                  |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               | <del></del>                                                                                                   |
|               |                                                                                                               |
|               |                                                                                                               |
| <del></del>   |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               | <del></del>                                                                                                   |
|               |                                                                                                               |
|               |                                                                                                               |
| <del></del> - |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
|               |                                                                                                               |
| <del></del>   |                                                                                                               |
|               |                                                                                                               |

|             | Exercise 6 Date:                                                                                                                                                                                                |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Find the solution set of each of the following                                                                                                                                                                  |
| <del></del> | and illustrate your answer on the number                                                                                                                                                                        |
|             | lino                                                                                                                                                                                                            |
|             | $1 \frac{2x-1}{x} - \frac{x-2}{x} > 1$                                                                                                                                                                          |
|             | 1. $\frac{2x-1}{4} - \frac{x-2}{3} > 1$<br>2. $\frac{2x-2}{4} - \frac{2x-1}{3} \le 1$<br>3. $\frac{1}{3}x + 1 \ge \frac{1}{2}x + \frac{1}{4}(2-x)$<br>4. $\frac{1}{3}(x-1) - \frac{1}{2}(x-3) \le 1\frac{1}{4}$ |
|             | $2.  \frac{2\lambda^{-2}}{4} - \frac{2\lambda^{-1}}{3} \le 1$                                                                                                                                                   |
|             | $3 \frac{1}{2} + 1 > \frac{1}{2} + 1 > \frac{1}{2} = 1$                                                                                                                                                         |
|             | $\begin{bmatrix} 3 & 3 & 1 & 1 & 2 & 2 & 1 & 4 & 4 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$                                                                                                                     |
|             | 4. $\frac{1}{2}(x-1) - \frac{1}{2}(x-3) \le 1\frac{1}{4}$                                                                                                                                                       |
| ·           | 3 2 4                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
| <del></del> |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
| <del></del> |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                 |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| Exercise / Date:                                                                                                                                                                                                                    |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Find the truthset of the following and                                                                                                                                                                                              |   |
| illustrate the answer on the number line.                                                                                                                                                                                           |   |
| 1 2 2 1                                                                                                                                                                                                                             |   |
| 1. $\frac{1}{2}x + 1\frac{1}{2} < \frac{3}{4}x - \frac{1}{2}$                                                                                                                                                                       |   |
| 1. $\frac{1}{3}x + 1\frac{2}{3} < \frac{3}{4}x - \frac{1}{2}$<br>2. $\frac{3}{4}(x+1) + 1 \le \frac{1}{2}(x-2) + 5$<br>3. $\frac{1}{2}x - \frac{5}{6}(x+2) \le 1 + x$<br>4. $\frac{1}{3}x - \frac{1}{4}(x+2) \ge 3x - 1\frac{1}{3}$ |   |
| 2. $\frac{1}{4}(x+1)+1 \le \frac{1}{2}(x-2)+5$                                                                                                                                                                                      |   |
| 2 1 5 ( , 2) 4 4 .                                                                                                                                                                                                                  |   |
| 3. $\frac{1}{2}x - \frac{1}{6}(x+2) \le 1+x$                                                                                                                                                                                        |   |
| $\frac{1}{1}$ , $\frac{1}{1}$ (, 2) > 2 1                                                                                                                                                                                           |   |
| 4. $-x - \frac{1}{4}(x + 2) \ge 3x - 1 - \frac{1}{3}$                                                                                                                                                                               |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     | · |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                     |   |

| <br>Exercise 8                       | Date:                                                    |
|--------------------------------------|----------------------------------------------------------|
| Solve                                |                                                          |
| <br>1. $\frac{1}{2}(4x-6)$           | $-\frac{1}{3}(5-4x) \ge 8$                               |
|                                      | 2(x+1) < 3(x+7) + 1                                      |
| 2. $0(x-4) + 2$                      | $-2(4x-5) \ge 8(x+1)$                                    |
| <br>3. $3(2x-3)$                     | $-2(4x-3) \ge 6(x+1)$                                    |
| <br>4. $\frac{3}{8}(2x-\frac{1}{3})$ | $-\frac{2}{9}(7-3x) \ge \frac{1}{4}x + \frac{2(x-8)}{7}$ |
|                                      |                                                          |
|                                      |                                                          |
|                                      |                                                          |
| <br>                                 |                                                          |
|                                      |                                                          |
|                                      |                                                          |
|                                      |                                                          |
| <br>                                 |                                                          |
| <br>                                 |                                                          |
|                                      |                                                          |
|                                      |                                                          |
| <br>                                 |                                                          |
| <br>                                 |                                                          |
|                                      |                                                          |
| <br>                                 |                                                          |
| <br>                                 |                                                          |
| <br>                                 |                                                          |
|                                      |                                                          |
|                                      |                                                          |
|                                      |                                                          |
|                                      |                                                          |
|                                      |                                                          |
| <br>                                 |                                                          |
| <br>                                 |                                                          |
| <br>                                 |                                                          |
|                                      |                                                          |
|                                      |                                                          |
| <br>                                 |                                                          |
|                                      |                                                          |
|                                      |                                                          |
| <br>                                 |                                                          |
| <br>                                 |                                                          |
|                                      |                                                          |
|                                      |                                                          |
| <br>                                 |                                                          |
|                                      |                                                          |

|             | Exercise 9 Da                                 | ate:                 |
|-------------|-----------------------------------------------|----------------------|
|             | Solve:                                        |                      |
|             | 1. $\frac{1}{4}(x+1) - \frac{1}{2}(x+2)$      | $\geq -3\frac{1}{4}$ |
|             | 2. $\frac{1}{2}(4x-6) - \frac{1}{3}(5-4x)$    | 4<br>v) > Q          |
|             | 2. $\frac{1}{2}(4x-0) - \frac{1}{3}(5-4)$     | <i>k)</i> ≥ 0<br>1   |
|             | $3. \ \frac{x}{3} - \frac{1}{4}(x+2) > 3x - $ | $2\frac{1}{5}$       |
|             | 4. $7(x+4) - \frac{2}{3}(x-6)$                | $\leq 2[x-3(x+5)]$   |
|             | 3                                             | . , ,,               |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
| <del></del> |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
| <del></del> |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |
|             |                                               |                      |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

### Example 2

Find the truthset and illustrate the answer on the number line.

$$0 \le 3x - 1 \le 2$$

#### Solution...

 $0 \le 3x - 1 \le 2$ 

Add 1 to each part

$$\Rightarrow 1+0 \leq 3x-1+1 \leq 2+1$$

$$\Rightarrow 1 \le 3x \le 3$$

Divide both sides by 3

$$\Rightarrow \frac{1}{3} \le \frac{3x}{3} \le \frac{3}{3}$$

$$\left\{x: \frac{1}{3} \le x \le 1\right\}$$



#### Exercise 10

Date:....

Solve the following inequalities.

1. 
$$4 < 3x + 1 \le 12$$

2. 
$$4 < 2x + 1 \le 7$$

3. 
$$x < 2x + 1 \le 7$$

4. 
$$2x < 3x + 1 \le 13$$

5. 
$$3 < 2x - 5 < 7$$

6. 
$$16 < 2x - 5 < 48$$

7. 
$$9 < 3n + 6 \le 21$$

| 8. $-3 < 2x - 1 \le 6$ |
|------------------------|
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |

| Exercise 11 Date:                 | Exercise 12                                                       |
|-----------------------------------|-------------------------------------------------------------------|
| Solve the following inequalities. | Solve and represent the solution on the                           |
| 1. $-35 < 6x + 7 < 1$             | number line.                                                      |
| 2. $-9 \le 6x + 5 \le 0$          | 1. $-5 < 2x - 3 < 6$                                              |
|                                   |                                                                   |
| 3. $1 < 4x - 9 < 5$               | $2.  0 < \frac{1}{3}t + \frac{1}{2} < 1$                          |
| 4. $8 < 3x - 2 < 11$              |                                                                   |
| 5. $6x + 3 < x < 3x + 9$          | $3.  0 < \frac{1}{2}(2 - 3x) < 2$                                 |
|                                   | 4. $-2 \le 2p - 3 < 1$                                            |
|                                   | 5. $-1 < (3t - 5 + 7 - 4t) \le 2$                                 |
|                                   | 6. $-2 - 3x < 10 + x < 2 - 3x$                                    |
|                                   |                                                                   |
|                                   | 7. $8-x < 7-2x < 4-x$                                             |
|                                   | $8.  -\frac{1}{4} < \frac{3}{4}(3x - 2) \le -\frac{1}{2}$         |
|                                   | 4 4 2                                                             |
|                                   | 9. $-3 \le 3x + \frac{1}{3} - \left(x - \frac{2}{3}\right) \le 6$ |
|                                   | 3 ( 3/                                                            |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
| <del></del>                       |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |
|                                   |                                                                   |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

### **BEARINGS AND VECTORS**

#### **BEARINGS**

#### Exercise 1

- 1. A ship sails due North from a point *P* to a point *Q*, 4km away. It then sails on a bearing of 090° to a point *R*, 3km from *Q*. Find the distance between *P* and *R*.
- 2. A ship sails from port *R* on a bearing 065° to port *S* a distance of 54km. It then sails on a bearing of 155° from port *S* to port *Q*, a distance of 80km. Find, correct to one decimal place,
  - (i) The distance between *R* and *Q*
  - (ii) The bearing of Q from R

#### Exercise 2

- 1. *A*, *B*, *X* and *Y* are four points in a horizontal plane. *B* is on a bearing of 090° from *A*. *X* is 7.5m due North of *B* and on a bearing of 052° from *A*. *Y* is due North of *A* and on a bearing of 340° from *B*. Calculate correct to **three** significant figures:
  - (a) |AB|
  - (b) |AY|
  - (c) The components of  $\overrightarrow{XY}$
  - (d) The distance and bearing of *Y* from *X*
- 2. A ship sails from a point *A* in a direction 065° to a point *B*, 24km away. From *B*, the ship sails 18km due East to a point *C*. From *C*, the ship then sails 30km due North to a point *D*. Calculate the bearing of *D* from *A*.
- 3. The locations of four towns, *P*, *Q*, *R* and *T* are such that *Q* is on a bearing of 270° from *P*. *T* is 12km due North of *P* and on a bearing of 047° from *Q*. *R* is due North of *Q* and 16km from *P*. Calculate, correct to **three** significant figures;
  - (a) The distance between *P* and *Q*
  - (b) The distance between *Q* and *R*
  - (c) The bearing of *R* and *P*
  - (d) The components of  $\overrightarrow{RT}$
  - (e)  $|\overrightarrow{RT}|$

#### Exercise 3

- 1. P, Q nd R are three villages on a level ground. Q is 4km on a bearing of 040° from P, while R is 3km on the bearing 130° from Q. Calculate the distance and bearing of P from R. State  $\overrightarrow{PR}$  in distance and bearing form.
- 2. Salifu walks 500 metres due North, then 250 metres due East and finally 500 metres on a bearing of 055°.
  - (i) Sketch a diagram to illustrate the movement.
  - (ii) Calculate, correct to the nearest whole number, how far North Salifu has moved from the starting point.
  - (iii) Calculate, correct to the nearest whole number, how far East Salifu has moved from the starting point.
  - (iv) Calculate the bearing of Salifu's final position from the starting point.
- 3. Two cyclists left a point *P* at the same time. The first cyclist covered 300m on a bearing of 296° and the second cyclist covered 250m on a bearing of 206°. Calculate, correct to **three** significant figures,
  - (a) The distance between the two cyclists
  - (b) The bearing of the second cyclist from the first.

#### Exercise 4

- 1. Three towns, *P*, *Q* and *R* are such that the distance between *P* and *Q* is 50km and the distance between *P* and *R* is 90km. If the bearing of *Q* from *P* is 075° and the bearing of *R* from *P* is 310°, find the:
  - (a) Distance between Q and R;
  - (b) Bearing of R from Q
- 2. A man travels from a village *X* on a bearing of 060° to a village *Y* which is 20km away. From *Y* he travels to a village *Z*, on a bearing of 195°. If *Z* is directly East of *X*, calculate correct to three significant figures, the distance of
  - (i) Y from X
- (ii) Z from X

### **BEARINGS AND VECTORS**

- 3. Two men P and *Q* set off from a base camp *R* prospecting for oil, moves 20km on a bearing of 205° and *Q* moves 15km on a bearing of 060°. Calculate the:
  - (a) Distance of Q from P,
  - (b) Bearing of *Q* from *P*

(Give your answer in each case correct to the nearest whole number)

#### Exercise 5

- A surveyor standing at a point *X* sights a pole *Y* due East of him and a tower *Z* of a building on a bearing of 046°. After walking to a point *W*, a distance of 180m in the South East direction, he observes the bearing of *Z* and *Y* to be 337° respectively.
  - (a) Calculate, correct to the nearest metre
    - (i) |*XY*|
- (ii) |*ZW*|
- (b) If N is on XY such that XN = ZN, find the bearing of Z from N.
- 2. The bearing of *Q* from *P* is 150° and the bearing of *P* from *R* is 015°. If *Q* and *R* are 24km and 32km respectively from *P*:
  - (i) Represent this information in a diagram;
  - (ii) Calculate the distance between *Q* and *R*, correct to two decimal places;
  - (iii) Find the bearing of *R* and *Q*, correct to the nearest degree.

3.



In the diagram, |PQ| = 8m, QR = 13m, the bearing of Q from P is  $050^{\circ}$  and the bearing of R from Q is  $130^{\circ}$ .

(a) Calculate correct to 3 significant figures

- (i) *PR*
- (ii) The bearing of R from P
- (b) Calculate the shortest distance between point *Q* and *PR*, hence the area of triangle *PQR*

#### Exercise 6

- 1. A boy walks 6km from a point *P* to a point *Q* on a bearing of 065°. He then walks to a point *R*, a distance of 13km, on a bearing of 146°.
  - (i) Sketch the diagram of his movement
  - (ii) Calculate, correct to the nearest kilometre, the distance *PR*.

2.



In the diagram, |AB| = 8 km, |BC| = 13 km, The bearing of *A* from *B* is 310° and the bearing of *B* from *C* is 230°. Calculate, correct to 3 significant figures,

- (a) The distance AC
- (b) The bearing of C from A
- (c) How far East of B, C is
- 3. A cyclist starts from a point *X* and rides 3km due West to a point *Y*. At *Y*, he changes direction and rides 5km North West to a point *Z*.
  - (i) How far is he from the starting point, correct to the nearest km?
  - (ii) Find the bearing of *Z* from *X*, to the nearest degree.

#### Exercise 7

- 1. A ship leaves port *P* and sails on a bearing of N45°E to a port *Q*, 15km away. It then sails on a bearing of S45°E to port *R*, 20km away.
  - (i) Represent the information in a diagram.

### **BEARINGS AND VECTORS**

- (ii) Calculate, correct to the **nearest** whole number, the
  - (a) Distance from *P* to *R*;
  - (b) Bearing of *P* from *R*.

2.



In the diagram, |OP|10km, |PQ| = 6km, the bearing of P from O is  $040^\circ$  while the bearing of Q from P is  $160^\circ$ .

- (a) Calculate, correct to **three** significant figures,
  - (i) |0Q|;
  - (ii) The bearing of *Q* from *O*;
- (b) How far South of *P* is *Q*? Correct to **three** significant figures.

#### Exercise 8

- 1. The bearing of points X and Y from Z are 040° and 300°, respectively. If |XY| = 19.5km and |YZ| = 11.5km,
  - (a) Illustrate the information in a diagram,
  - (b) Calculate, correct to the **nearest** whole number,
    - (i)  $\langle ZXY;$
    - (ii) |XZ|;
    - (iii) Bearing of *X* from *Y*.
- 2. The bearing of *Q* from *P* is 150° and the bearing of *P* from *R* is 015°. If *Q* and *R* are 24km and 32km respectively from *P*.
  - (i) Represent this information in a diagram;
  - (ii) Calculate the distance between *Q* and *R*, correct to **two** decimal places;
  - (iii) Find the bearing of *R* from *Q*, correct to the **nearest** degree.

#### Exercise 9

- 1. Town *Q* is 20km due North of *P*. The bearing of town *R* from *Q* is 140°. If *R* is 8km from *Q*, calculate
  - (a) The bearing of *R* from *P*, to the **nearest** degree.
  - (b) How far North of *P*, *R* is, correct to **two** significant figures.

2.



The diagram shows the position of three points P, Q and X on a horizontal plane. The bearing of P from Q is 240° and that of X from P is 315°. If |PQ| = 36km, and |PX| = 55km, evaluate, correct to one decimal place,

- (i) |QX|;
- (ii) The bearing of *Q* from *X*
- 3. A boat sails 6km on a bearing of 037° and then 7km on a bearing of 068°. Calculate:
  - (a) The distance of the boat from the starting point, correct to **two** decimal places:
  - (b) The bearing of the boat from its starting point, correct to the **nearest** degree.
- 4. The bearing of *P* from *X*, 10km away is 025°. Another point *Q* is 6km from *X* and on a bearing of 162°. Calculate the:
  - (i) Distance *PO*:
  - (ii) Bearing of *P* from *Q*.
- 5. Two boats *A* and *B* leave a port at the same time. *A* travels 15km on a bearing of 020° while *B* travels 14km on a bearing of 290°. Calculate, correct to **two** decimal places, the
  - (a) Distance between A and B;
  - (b) Bearing of A from B

### **BEARINGS AND VECTORS**

Vectors are physical quantities that have both magnitude and direction.

In Mathematics, vectors are represented by line segments and arrow head showed direction.



 $\overrightarrow{AB}$ : point

*A* is the (initial) origin and *B* the destination (terminal or end point).

### REPRESENTATION OF VECTORS IN STANDARD BASIC FORM

- 1. The column or Component Form For example,  $\overrightarrow{AB} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$
- 2. The Magnitude and Bearing Form  $\overrightarrow{OB} = (3 \text{km}, 060^{\circ})$

### MODULUS OR MAGNITUDE OR LENGTH OF A VECTOR

If 
$$\mathbf{a} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, then  $|\mathbf{a}| = \sqrt{x^2 + y^2}$ 

#### Example 1

Find the length of the vector  $a = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ .

#### Solution...

$$|a| = \sqrt{3^2 + 4^2}$$
  
 $|a| = \sqrt{25} = 5$  units

### Example 2

If 
$$\overrightarrow{CD} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
 and  $\overrightarrow{AB} = \begin{pmatrix} 5 \\ 12 \end{pmatrix}$ . Find  
(i)  $|\overrightarrow{CD}|$  (ii)  $|\overrightarrow{AB}|$ 

#### Solution...

(i) 
$$|\overrightarrow{CD}| = \sqrt{(-2)^2 + 3^2} = \sqrt{13} \text{ units}$$
  
(ii)  $|\overrightarrow{AB}| = \sqrt{5^2 + 12^2} = \sqrt{169}$   
= 13 units

#### Exercise 1 Date:....

Find the magnitude of the following vectors.

(i) 
$$a = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
 (iii)  $c = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$   
(ii)  $b = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$  (iv)  $d = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ 

(ii) 
$$\mathbf{b} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 (iv)  $\mathbf{d} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ 

| <br> | <br> | <br>_ |
|------|------|-------|
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |
|      |      |       |
|      |      |       |
|      |      |       |
|      |      | _     |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |
|      |      |       |
|      |      |       |
| <br> | <br> |       |
|      |      |       |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |
|      |      |       |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |
|      |      |       |
|      |      |       |
|      |      |       |
|      |      | _     |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>- |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |
|      |      |       |
|      |      |       |
|      |      |       |
|      |      | _     |
|      |      |       |
|      |      |       |
| <br> | <br> | <br>_ |

### DIRECTION OF A VECTOR

IF  $\overrightarrow{AB} = \begin{pmatrix} x \\ y \end{pmatrix}$ , then the direction is the angle measured from the geographical north to the vector through a clockwise direction.

i.e.



$$\tan \theta = \frac{x}{y}$$

$$\theta = \tan^{-1} \left(\frac{x}{y}\right)$$

In finding the bearing (direction) of  $\overrightarrow{AB}$ , we subtract the angle that the line  $\overrightarrow{AB}$  makes with the positive x – axis from the north, i.e. 90°.

$$\therefore \text{ Direction of } \overrightarrow{AB} = 90 - \tan^{-1} \left( \frac{x}{y} \right)$$

### Example 2

Find the magnitude and direction of the following.

1. 
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

1. 
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 3.  $\overrightarrow{PQ} = \begin{pmatrix} -7 \\ -5 \end{pmatrix}$ 

$$2. \quad \overrightarrow{MN} = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix}$$

### Solution...

1. 
$$|\overrightarrow{AB}| = \sqrt{2^2 + 3^2} = \sqrt{13} = 3.61$$
units



$$\tan \theta = \frac{3}{2}$$
$$\theta = \tan^{-1} \left(\frac{3}{2}\right) = 56.3^{\circ}$$

∴ Direction of 
$$\overrightarrow{AB}$$
  
= 90° – 56.3° = 33.7°

$$\therefore \overrightarrow{AB} = (3.61 \text{ units}, 33.7^{\circ})$$

2. 
$$|\overrightarrow{MN}| = \sqrt{(-2)^2 + (6)^2} = 6.32$$
 units



$$\tan \theta = \left(\frac{6}{2}\right)$$
$$\theta = \tan^{-1}(3) = 71.6^{\circ}$$

 $\therefore$  Direction of  $\overrightarrow{MN}$ 

$$= 270^{\circ} + 71.6^{\circ} \cong 342^{\circ}$$

$$\vec{M} = (6.32 \text{ units}, 342^{\circ})$$

3. 
$$|\overrightarrow{PQ}| = \sqrt{(-7)^2 + (-5)^2} = 8.6$$
 units



$$\tan \theta = \frac{5}{7}$$

$$\theta = \tan^{-1} \left(\frac{5}{7}\right) = 35.5^{\circ}$$

∴ Direction of 
$$\overrightarrow{PQ}$$
  
= 270° - 35.5°  $\cong$  234°

$$\vec{PQ} = (8.6 \text{ units}, 234^{\circ})$$

#### Exercise 2 Date:....

Find the magnitude and bearing of the following.

1. 
$$\overrightarrow{QR} = \begin{pmatrix} 3 \\ -7 \end{pmatrix}$$
 3.  $\overrightarrow{MN} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ 

3. 
$$\overrightarrow{MN} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

$$2. \quad \overrightarrow{AB} = \begin{pmatrix} -6 \\ -9 \end{pmatrix}$$

| <br>EQUAL VECTORS                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>Two vectors $\overrightarrow{AB}$ and $\overrightarrow{PQ}$ are said to be equal (or equivalent) if they have the same magnitude                                                                |
| <br>and direction. i.e. $\overrightarrow{AB} = \overrightarrow{PQ} \Leftrightarrow  AB  =  PQ $                                                                                                     |
| <br>                                                                                                                                                                                                |
| If $\binom{x_1}{y_1} = \binom{x_2}{y_2}$ , then $x_1 = x_2$ and $y_1 = y_2$                                                                                                                         |
| <br>V17 V27                                                                                                                                                                                         |
| <br>Example 3                                                                                                                                                                                       |
| <br>If $\mathbf{m} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ and $\mathbf{n} = \begin{pmatrix} 3x \\ 3+y \end{pmatrix}$ are equal                                                                    |
| <br>vectors, find the values of $x$ and $y$ .                                                                                                                                                       |
| <br>Solution                                                                                                                                                                                        |
| <br>Since the two vectors are equal, then $\mathbf{m} = \mathbf{n}$ .                                                                                                                               |
| <br>$\Rightarrow \binom{6}{-3} = \binom{3x}{3+y}$                                                                                                                                                   |
| <br>$\Rightarrow 3x = 6  \text{Also} = -3 = 3 + y  \therefore x = 2  \therefore y = -6$                                                                                                             |
| <br>Exercise 3 Date:                                                                                                                                                                                |
| <br>1. If $\mathbf{m} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ and $\mathbf{n} = \begin{pmatrix} 5x \\ y-4 \end{pmatrix}$ are equal                                                                 |
| <br>vectors, find the values of $x$ and $y$ .                                                                                                                                                       |
| 2. If $\mathbf{a} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2x \\ 3+y \end{pmatrix}$ are equal                                                                     |
| <br>vectors, find the values of $x$ and $y$ .                                                                                                                                                       |
| <br>(2-r) $(3)$                                                                                                                                                                                     |
| <br>3. If $\mathbf{m} = \begin{pmatrix} 2 - x \\ 2y + 1 \end{pmatrix}$ and $\mathbf{n} = \begin{pmatrix} 3 \\ -2 - y \end{pmatrix}$ ; find the values of $x$ and $y$ if $\mathbf{m} = \mathbf{n}$ . |
| <br>4. Given that $\mathbf{p} = \begin{pmatrix} a-2 \\ 5h+1 \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} 7 \\ -9 \end{pmatrix}$ ;                                                               |
| <br>find $a$ and $b$ if $p = q$ .                                                                                                                                                                   |
| <br>5. Given that the vectors $\binom{2x-3}{y-x}$ and                                                                                                                                               |
| <br>$\begin{pmatrix} x-y \\ 3x-5 \end{pmatrix}$ are equal; find the values of x                                                                                                                     |
| (3x - 5) are equal, and the values of $x$ and $y$ .                                                                                                                                                 |
| <br>                                                                                                                                                                                                |
|                                                                                                                                                                                                     |

| SCALAR                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If $\boldsymbol{a} = \binom{m}{n}$ , then $\lambda \boldsymbol{a} = \binom{\lambda m}{\lambda n}$ , $\forall \lambda \in \mathbb{R}$                                                                                                |
| Example 4 Given that $\mathbf{u} = {-2 \choose 3}$ and $\mathbf{v} = {2 \choose 6}$ . Find $\frac{1}{3}(\mathbf{u} + \frac{1}{2}\mathbf{v})$ .                                                                                      |
| Solution $u + \frac{1}{2}v = {\binom{-2}{3}} + \frac{1}{2}{\binom{2}{6}} = {\binom{-2+1}{3+3}} = {\binom{-1}{6}}$                                                                                                                   |
| $\therefore \frac{1}{3} \left( \boldsymbol{u} + \frac{1}{2} \boldsymbol{v} \right) = \frac{1}{3} {\binom{-1}{6}} = {\binom{-\frac{1}{3}}{2}}.$                                                                                      |
| Exercise 4 Date:                                                                                                                                                                                                                    |
| 2. If $\mathbf{u} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ , $\mathbf{s} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$ and $\mathbf{t} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ , find $2\mathbf{u} - 4\mathbf{s} + \mathbf{t}$ .        |
| 3. If $\mathbf{p} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ , $\mathbf{q} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ , evaluate $2\mathbf{p} - \mathbf{q} + \mathbf{r}$ .       |
| 4. Given that $\mathbf{p} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ , $\mathbf{q} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ , find $2\mathbf{p} + 3\mathbf{q} - 4\mathbf{r}$ . |
|                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                     |

|             | Exercise 5 Date:                                                                                                                                              |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 1. If $\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ , find $\mathbf{p} - 3\mathbf{q}$ .        |
|             | (3) (-2)                                                                                                                                                      |
|             | (-3)                                                                                                                                                          |
|             | 2. Given that $\mathbf{x} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ ,                                 |
|             | calculate $3x - y$ .                                                                                                                                          |
|             |                                                                                                                                                               |
|             | 3. If $q = {\binom{-4}{2}}$ , find $p$ such that $q = \frac{1}{2}p$ .                                                                                         |
|             | 3. If $\mathbf{q} = \begin{pmatrix} 2 \end{pmatrix}$ , that $\mathbf{p}$ such that $\mathbf{q} = {}_{2}\mathbf{p}$ .                                          |
|             | (4) (2)                                                                                                                                                       |
|             | 4. If $\mathbf{p} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ , $\mathbf{q} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ and $2\mathbf{r} = \mathbf{p} + \mathbf{q}$ , |
|             | find $\mathbf{r}$ .                                                                                                                                           |
|             | iniu i .                                                                                                                                                      |
|             | - · · · (2) · · (4)                                                                                                                                           |
|             | 5. If $\boldsymbol{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ , $\boldsymbol{b} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ and                                   |
| <del></del> | $r = a + \frac{1}{2}(a - b)$ , find:                                                                                                                          |
|             | (i) $r$ (ii) $ r $                                                                                                                                            |
|             |                                                                                                                                                               |
| ·           |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
| <del></del> |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |
|             |                                                                                                                                                               |

|             | Exercise 6 Date:                                                                                                                                                         |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 1. If $\boldsymbol{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ , evaluate                                    |
|             |                                                                                                                                                                          |
|             | u+v .                                                                                                                                                                    |
|             |                                                                                                                                                                          |
|             | 2. Find the values of $x$ and $y$ in the                                                                                                                                 |
|             | equation $\binom{x+3}{2} - \binom{y}{x+y} = \binom{2}{-1}$ .                                                                                                             |
|             | (2)(x+y)(-1)                                                                                                                                                             |
|             | / 3r ± 1 \                                                                                                                                                               |
|             | 3. Given that $\boldsymbol{m} = \begin{pmatrix} 3x+1 \\ -2y+3 \end{pmatrix}$ and                                                                                         |
|             | ( ) /                                                                                                                                                                    |
|             | $\boldsymbol{n} = \begin{pmatrix} -8 \\ 5 \end{pmatrix}$ , find $(x, y)$ if $\boldsymbol{m} = \boldsymbol{n}$ .                                                          |
|             | (3)                                                                                                                                                                      |
|             | (2) (-3) (-3)                                                                                                                                                            |
|             | 4. If $\boldsymbol{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ . Find $ \boldsymbol{a} - 2\boldsymbol{b} $ . |
|             |                                                                                                                                                                          |
|             | f(x) = (-3)                                                                                                                                                              |
|             | 5. If $x = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ and $y = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ , calculate                                                            |
|             | 3x-y .                                                                                                                                                                   |
|             |                                                                                                                                                                          |
|             | 6. If $\boldsymbol{a} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ , find                                        |
|             |                                                                                                                                                                          |
|             | (a) $ b $ (b) $ a+b $ (c) $ 2a-b $                                                                                                                                       |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
| <del></del> |                                                                                                                                                                          |
|             |                                                                                                                                                                          |
|             |                                                                                                                                                                          |

|             | Exercise 7 Date:                                                                                                                                                              |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 1. If $4\binom{1}{3} + 2\binom{1}{m} = 3\binom{n}{-6}$ , find the                                                                                                             |
|             | values of $m$ and $n$ .                                                                                                                                                       |
|             | 2. Find the values of $\lambda$ and $\mu$ such that                                                                                                                           |
|             | $\binom{\lambda+4}{2} - \binom{\mu}{\lambda+\mu} = \binom{6}{-3}$ .                                                                                                           |
|             | 2 /                                                                                                                                                                           |
|             | 3. If $3 \binom{2}{x} - \binom{1-y}{4} = \binom{3-2y}{1-2x}$ . Find the values of $x$ and $y$ .                                                                               |
|             | (2r+1) (6)                                                                                                                                                                    |
|             | 4. If $\mathbf{m} = \begin{pmatrix} 2x+1 \\ 2-3y \end{pmatrix}$ , $\mathbf{n} = \begin{pmatrix} 6 \\ -8 \end{pmatrix}$ and                                                    |
|             | $m + n = \binom{9}{-12}$ , find<br>(i) Values of x and y                                                                                                                      |
| <del></del> | (ii) Components of <b>m</b>                                                                                                                                                   |
|             | 5. Two vectors are represented by $r = 2a$                                                                                                                                    |
|             | and $\mathbf{s} = 3\mathbf{a}$ where $\mathbf{a} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ . Find                                                                              |
|             | r-s .                                                                                                                                                                         |
|             | 6. If $\mathbf{p} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ , $\mathbf{q} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ and $\mathbf{s} = \begin{pmatrix} 4 \\ -11 \end{pmatrix}$ . |
|             | Find $ p+q-s $ .                                                                                                                                                              |
|             | 7. Given that $s = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ , $\boldsymbol{m} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$ , if                                                      |
|             | $n = \frac{1}{4}(s + m)$ and $t = \frac{1}{2}(s - m)$ . Show                                                                                                                  |
| <del></del> | that $ n+t = n-t $ .                                                                                                                                                          |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |
|             |                                                                                                                                                                               |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

### Example 5

The vectors  $\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ ,  $\mathbf{q} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$  and  $\mathbf{r} = \frac{1}{2}(\mathbf{q} - \mathbf{p})$ .

- (i) Find the vector *r*
- (ii) If  $m\mathbf{p} + n\mathbf{q} = {4 \choose 3}$ , find m and n, where m and n are scalars.

### Solution...

(i) 
$$r = \frac{1}{2}(\mathbf{q} - \mathbf{p}) = \frac{1}{2}\left(\binom{2}{5} - \binom{2}{3}\right)$$
$$= \frac{1}{2}\binom{0}{2} = \binom{0}{1}$$

(ii) 
$$m\mathbf{p} + n\mathbf{q} = {4 \choose 3}$$
  
 $m{2 \choose 3} + n{2 \choose 5} = {4 \choose 3}$   
 $2m + 2n = 4$   
 $\therefore m + n = 2$ .....(1)  
 $3m + 5n = 3$ .....(2)

$$(2) - 3(1) \Rightarrow 2n = -3 \qquad \therefore n = -\frac{3}{2}$$

$$Put \ n = -\frac{3}{2} \text{ into (1)}$$

$$\Rightarrow m - \frac{3}{2} = 2 \qquad \therefore m = \frac{7}{2}$$

Hence, 
$$m = \frac{7}{2}$$
,  $n = -\frac{3}{2}$ 

### Exercise 8 Date:.....

- 1. The vectors  $\mathbf{a} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ ,  $\mathbf{b} = \begin{pmatrix} x \\ y \end{pmatrix}$  and  $\mathbf{c} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$  are in the same plane. If  $3\mathbf{a} 2\mathbf{b} = \mathbf{c}$ , find
  - (i) the vector **b**;
  - (ii) |d| and express your answer in the form  $p\sqrt{q}$  where p and q are integers and d = b c.

2. If 
$$\mathbf{a} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
,  $\mathbf{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$  and  $\mathbf{c} = \begin{pmatrix} 8 \\ 3 \end{pmatrix}$ , find

(i)  $m$  and  $n$  such that  $\mathbf{c} = m\mathbf{a} + n\mathbf{b}$ 

where m and n are scalars.

(ii) |d| if d = c - 2a.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |

| <br> |
|------|
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

| <br>Exercise 9 Date:                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>1. If $\mathbf{p} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ , $\mathbf{q} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 5 \\ -6 \end{pmatrix}$ , |
| find:                                                                                                                                                                           |
| <br>(a) $m$ and $n$ , such that $r = mp + nq$ ,                                                                                                                                 |
| <br>where $m$ and $n$ are scalars.                                                                                                                                              |
| <br>(b)                                                                                                                                                                         |
| (i) $ g $ , if $g = 3q + r$<br>(ii) the bearing of $g$                                                                                                                          |
| <br>(ii) the bearing of <b>g</b>                                                                                                                                                |
| <br>2. If $\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ , $\mathbf{q} = \begin{pmatrix} 6 \\ 23 \end{pmatrix}$ , $\mathbf{r} = \begin{pmatrix} 2 \\ -7 \end{pmatrix}$ and |
| <br>(7) Fig. 1                                                                                                                                                                  |
| <br>$s = \binom{7}{4}$ . Find,                                                                                                                                                  |
| <br>(i) $ 3\mathbf{p} + 2\mathbf{q} - 5\mathbf{r} $                                                                                                                             |
| (ii) the scalars $m$ and $n$ such that $s = mp + nq + r$ .                                                                                                                      |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
| <br>                                                                                                                                                                            |
| <br>                                                                                                                                                                            |
| <br>                                                                                                                                                                            |
|                                                                                                                                                                                 |
| <br>                                                                                                                                                                            |
|                                                                                                                                                                                 |
| <br>                                                                                                                                                                            |
| <br>                                                                                                                                                                            |
| <br>                                                                                                                                                                            |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
| <br>                                                                                                                                                                            |
| <br>                                                                                                                                                                            |
| <br>                                                                                                                                                                            |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
| <br>                                                                                                                                                                            |
| <br>                                                                                                                                                                            |
| <br>                                                                                                                                                                            |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

Exercise 10

1. The vectors  $\mathbf{a}$ ,  $\mathbf{b}$ ,  $\mathbf{c}$  are given by  $\mathbf{a} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ ,  $\mathbf{b} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ ,  $\mathbf{c} = \begin{pmatrix} -1 \\ 17 \end{pmatrix}$ . Find the numbers

m and n so that  $m\mathbf{a} + n\mathbf{b} = \mathbf{c}$ 

- 2. If  $\mathbf{a} = \begin{pmatrix} 6 \\ -5 \end{pmatrix}$ ,  $\mathbf{b} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$  and  $\mathbf{c} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$ . Find the values of p and q such that  $\mathbf{c} = p\mathbf{a} + q\mathbf{b}$ .
- 3. Given that  $\mathbf{p} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ ,  $\mathbf{q} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$  and  $\mathbf{r} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ , find the values of  $\lambda$  and  $\mu$  from the expression  $\mathbf{r} = \lambda \mathbf{p} + \mu \mathbf{q}$ .
- from the expression  $\mathbf{r} = \lambda \mathbf{p} + \mu \mathbf{q}$ . 4. If  $\mathbf{p} = {5 \choose 6}$ ,  $\mathbf{q} = {-1 \choose 0}$  and  $\mathbf{r} = {5 \choose -2}$ , find the values of the constants x and y such that  $2p = 5x\mathbf{q} - 3y\mathbf{r}$ .
- 5. If  $p = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$  and  $r = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$  respectively. Find
  - (a) |3p 2r|
  - (b) the values of the scalars m and n such that  $\binom{8}{8} = m\mathbf{p} + n\mathbf{r}$ .
- 6. Find the values of k for which the vector  $\binom{k+4}{3k-3}$  has a magnitude of 15 units.
- 7. If  $r = \binom{2}{3}$  and  $s = \binom{\lambda}{-3}$ . Find
  - (i) the values of  $\mu$  and of  $\lambda$  if  $\mu r + 2s = \begin{pmatrix} 2 \\ -18 \end{pmatrix}$
  - (ii) the values of  $\lambda$  such that  $|4\mathbf{r} + \mathbf{s}| = 3|\mathbf{s}|$ .
- 8. Vectors **a** and **b** are such that

$$a = {3+m \choose 5-2n}$$
 and  $b = {4-2n \choose 10+3m}$ 

- (i) Given that  $3\mathbf{a} + \mathbf{b} = \begin{pmatrix} 1+n \\ -5 \end{pmatrix}$ , find the values of m and n
- (ii) Show that the magnitude of b is  $k\sqrt{5}$ , where k is an integer to be found.
- 9. Given that  $\mathbf{p} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ ,  $\mathbf{q} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$  and  $\mathbf{r} = \begin{pmatrix} 5 \\ 17 \end{pmatrix}$ , express r in terms of p and q.

RESULTANT OF VECTORS (ADDITION OF VECTORS)

### TRIANGULAR LAW OF VECTOR ADDITION

Let a and b be any two vectors (represented by  $\overrightarrow{PQ}$  and  $\overrightarrow{QR}$  in the diagram below) such that the end point a is the initial point of b.

i.e.  $\boldsymbol{a} = \overrightarrow{PQ}$ ,  $\boldsymbol{b} = \overrightarrow{QR}$ 



$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$
$$\boldsymbol{a} + \boldsymbol{b} = \overrightarrow{PR}$$

### Example 6

Find the resultant of the vectors  $\mathbf{a}$  and  $2\mathbf{b}$  if  $\mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} -6 \\ -4 \end{pmatrix}$ .

Solution...

$$a + 2b = {2 \choose 3} + 2 {-6 \choose -4}$$
$$= {2 - 12 \choose 3 - 8} = {-10 \choose -15}$$

### Example 7

If  $\overrightarrow{PQ} = \begin{pmatrix} a \\ b \end{pmatrix}$  and  $\overrightarrow{RQ} = \begin{pmatrix} c \\ d \end{pmatrix}$ , express  $\overrightarrow{PR}$  as a column vector

Solution...



From the diagram,

$$\overrightarrow{PR} + \overrightarrow{RQ} = \overrightarrow{PQ} 
\overrightarrow{PR} = \overrightarrow{PQ} - \overrightarrow{RQ} 
\overrightarrow{PR} = \binom{a}{b} - \binom{c}{d} = \binom{a-c}{b-d}$$

| Exercise 11 Date:                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1. $PQR$ is a triangle such that $\overrightarrow{PQ} = \binom{4}{3}$                                                                            |  |
| and $\overrightarrow{PR} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$ . Find $\overrightarrow{RQ}$ .                                                  |  |
| and $I = \binom{6}{6}$ . This reg.                                                                                                               |  |
| 2. Given that $\overrightarrow{PQ} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\overrightarrow{PR} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$ ,   |  |
| find $\overrightarrow{QR}$ .                                                                                                                     |  |
| mu yk.                                                                                                                                           |  |
| 3. In the triangle $PQR$ , $\overrightarrow{PQ} = \begin{pmatrix} 4 \\ -4 \end{pmatrix}$ and                                                     |  |
| $\overrightarrow{PR} = \begin{pmatrix} -3 \\ 9 \end{pmatrix}$ . Find $\overrightarrow{QR}$ .                                                     |  |
| (9)                                                                                                                                              |  |
| 4. If $\overrightarrow{BA} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$ , calculate |  |
| the magnitude of $\overrightarrow{BC}$ .                                                                                                         |  |
| the magnitude of 20.                                                                                                                             |  |
| 5. In the triangle $ABC$ , $\overrightarrow{AB} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and                                                      |  |
| $\overrightarrow{AC} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ . Find $\overrightarrow{BC}$ .                                                     |  |
| (-3)                                                                                                                                             |  |
| 6. In triangle $PQR$ , $\overrightarrow{PQ} = \binom{3}{2}$ and                                                                                  |  |
| $\overrightarrow{RQ} = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ , find $ \overrightarrow{PR} $ .                                                   |  |
| $\frac{1}{4}$ /, $\frac{1}{4}$                                                                                                                   |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
| <del></del>                                                                                                                                      |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
| <del>-</del>                                                                                                                                     |  |

#### POSITION VECTORS

Let *O* be a point fixed in space.

Then O is called the origin or the reference point of a given coordinate system. Let A be any other point in space. The displacement vector  $\overrightarrow{OA}$  is called the position vector of A relative to the origin O.

Thus the position vector of B relative to A is the directed line segment  $\overline{AB}$ .



In 
$$\triangle OAB$$
,  $\overrightarrow{OA} = \boldsymbol{a}$ ,  $\overrightarrow{OB} = \boldsymbol{b}$ 

$$\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}$$

In particular,

$$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB} = \boldsymbol{a} - \boldsymbol{b}$$

$$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC} = \mathbf{d} - \mathbf{c}$$

$$\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM} = n - m$$

### Example 7

A(-1,5), B(-1,2) and C(3,0) are points in the x-y plane. Find  $\overrightarrow{BA}$  and  $\overrightarrow{BC}$  in the form  $\binom{x}{v}$ .

#### Solution...

$$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} 
\overrightarrow{BC} = {3 \choose 0} - {-1 \choose 2} = {4 \choose -2}$$

### Exercise 12 Date:.....

- 1. The vertices of a triangle are P(1, -3), Q(7,5) and R(-3,5).
  - (i) Express  $\overrightarrow{PQ}$ ,  $\overrightarrow{QR}$  and  $\overrightarrow{PR}$  as column vectors.
  - (ii) Show that triangle *PQR* is isosceles.

|      | [AB]                                                                              |
|------|-----------------------------------------------------------------------------------|
| (ii) | The value of $m$ if $\overrightarrow{BC} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$ |
|      | (-3)                                                                              |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |
|      |                                                                                   |

2. Given A(1,3), B(-2,-1) and C(2,3m)

where m is a constant, find

| <br>                                                                                       |
|--------------------------------------------------------------------------------------------|
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
|                                                                                            |
|                                                                                            |
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
| <br>                                                                                       |
|                                                                                            |
|                                                                                            |
|                                                                                            |
| Exercise 13 Date:                                                                          |
| <br>1. If $A(3,-5)$ , $B(1,3)$ are two points in a                                         |
|                                                                                            |
| <br>plane and $\overrightarrow{BC} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$ . Find         |
| (i) the co – ordinates of <i>C</i>                                                         |
|                                                                                            |
| <br>(ii) the value of $ \overrightarrow{AC} $ , correct to two                             |
| significant figures                                                                        |
|                                                                                            |
| 2. $PQRS$ is a quadrilateral with $P(2, 2)$ ,                                              |
|                                                                                            |
| $S(4,4)$ and $R(6,4)$ . If $\overrightarrow{PQ} = 4\overrightarrow{SR}$ , find             |
| the co – ordinates of $Q$ .                                                                |
| <br>3.                                                                                     |
| (a) The points $M(2,3), N(5,-2)$ and                                                       |
| <br>T(3,-5) are in the $x-y$                                                               |
|                                                                                            |
| rectangular plane. $\longrightarrow$                                                       |
| If $k\overrightarrow{OM} + l\overrightarrow{ON} = \overrightarrow{MT}$ , where $k$ and $l$ |
| are real numbers, calculate the                                                            |
| <br>value of                                                                               |
| (i) $k$ (ii) $l$                                                                           |
|                                                                                            |
| (b) Given that $\overrightarrow{AC} = \binom{-7}{2}$ , calculate the                       |
| <br>` <b>_</b> ,                                                                           |
| (i) correct to three significant                                                           |
| figures, the length of $\overrightarrow{AC}$                                               |
| <br>(ii) bearing of C form A, correct                                                      |
| to the nearest degree.                                                                     |
|                                                                                            |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| <br> |
|------|
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |

# THE POSITION VECTOR OF A POINT THAT DIVIDES A GIVEN STRAIGHT LINE IN A GIVEN RATIO

### 1. Internal Division

Suppose the point C divides the line AB internally in the ratio m:n. Let O be a reference point.



$$\begin{split} & |\overrightarrow{AC}| \colon |\overrightarrow{CB}| = m : n \\ & \frac{|\overrightarrow{AC}|}{|\overrightarrow{CB}|} = \frac{m}{n} \\ & n |\overrightarrow{AC}| = m |\overrightarrow{CB}| \end{split}$$

Since  $\overrightarrow{AC}$  and  $\overrightarrow{CB}$  are in the same direction.

$$n\overrightarrow{AC} = m\overrightarrow{CB}$$

$$n(\overrightarrow{OC} - \overrightarrow{OA}) = m(\overrightarrow{OB} - \overrightarrow{OC})$$

$$n\overrightarrow{OC} - n\overrightarrow{OA} = m\overrightarrow{OB} - m\overrightarrow{OC}$$

$$n\overrightarrow{OC} + m\overrightarrow{OC} = m\overrightarrow{OB} + n\overrightarrow{OA}$$

$$\overrightarrow{OC}(n+m) = m\overrightarrow{OB} + n\overrightarrow{OA}$$

$$\overrightarrow{OC} = \frac{m\overrightarrow{OB} + n\overrightarrow{OA}}{m+n}$$

$$\overrightarrow{OC} = \frac{n\overrightarrow{OA} + m\overrightarrow{OB}}{m+n}$$

$$c = \frac{na + mb}{m+n}$$

Where *a*, *b* and *c* are the position vectors of *A*, *B* and *C* respectively.

### **DEDUCTION**

1. If *C* is the midpoint of *AB*, then:



If 
$$\lambda = \mu$$
, then  $\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$ 

### 2. Point of Trisection

(i)





If C is a point of trisection of AB near *B*, then,

$$c = \frac{2b+a}{2+1} = \frac{1}{3}(2b+a)$$

(ii) If C is a point of trisection of B,

$$c = \frac{2a+b}{2+1} = \frac{1}{3}(2a+b)$$

### Example 8

A point A has position vector **a** and B has position vector  $\boldsymbol{b}$ . Prove that M, the midpoint of AB has position vector  $\frac{1}{2}(a + b)$ 

Solution...



 $|\overrightarrow{AM}|$ :  $|\overrightarrow{MB}| = 1$ : 1 since M is the midpoint.

$$\frac{|\overrightarrow{AM}|}{|\overrightarrow{MB}|} = \frac{1}{1}$$

$$\overrightarrow{AM} = \overrightarrow{MB}$$

$$\overrightarrow{OM} - \overrightarrow{OA} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$m - a = b - m$$

$$m + m = a + b$$

$$2m = a + b$$

$$m = \frac{1}{2}(a + b)$$
 as required.

### Exercise 14

Date:.....

- 1. The points O, A and B have coordinates (0,0), (5,0) and (-1,4) respectively. Write as column vectors.
  - (a)  $\overrightarrow{OB}$
  - (b)  $\overrightarrow{OA} + \overrightarrow{OB}$
  - (c)  $\overrightarrow{OA} \overrightarrow{OB}$
  - (d)  $\overrightarrow{OM}$  where M is the mid point of
- 2. Given that  $\overrightarrow{OP} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ ,  $\overrightarrow{OQ} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$  and that M is the mid – point of PQ, express as column vectors
  - (a)  $\overrightarrow{PQ}$
  - (b)  $\overrightarrow{PM}$
  - (c)  $\overline{OM}$
- 3. A(4,7) is the vertex of triangle *ABC*.  $\overrightarrow{BA} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$  and  $\overrightarrow{AC} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ .
  - (a) Find the co ordinates of B and C
  - (b) If *M* is the midpoint of the line  $\overrightarrow{BC}$ , find  $\overrightarrow{AM}$ .
- 4. P(7,4) is a vertex of triangle PQR. If  $\overrightarrow{QP} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$  and  $\overrightarrow{PR} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ , find
  - the co ordinates of Q and R
  - $\overrightarrow{PN}$ , where N is the midpoint of (ii)  $\overrightarrow{OR}$

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |

| <del></del> |                                                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
| <del></del> |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             | Exercise 15 Date:                                                                                                                                  |
|             | 1. Given that $P(2, -3)$ is a vertex of a                                                                                                          |
|             | triangle $PQR$ , $\overrightarrow{PQ} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ and $\overrightarrow{RP} = \begin{pmatrix} -4 \\ -1 \end{pmatrix}$ , |
|             |                                                                                                                                                    |
|             | (i) Find                                                                                                                                           |
|             | $\alpha$ ) the co – ordinates of $Q$ and $R$                                                                                                       |
|             |                                                                                                                                                    |
|             | $\beta$ ) $\overline{ QR }$                                                                                                                        |
|             | (ii) If M is the midpoint of $\overrightarrow{PR}$ , find                                                                                          |
|             | $\overrightarrow{MQ}$ .                                                                                                                            |
|             | MQ.                                                                                                                                                |
|             | / 1>                                                                                                                                               |
|             | 2. In triangle $\overrightarrow{ABC}$ , $\overrightarrow{AB} = {\binom{-4}{6}}$ and                                                                |
|             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                               |
|             | $\overrightarrow{AC} = \begin{pmatrix} 3 \\ -8 \end{pmatrix}$ . If <i>P</i> is the midpoint of $\overrightarrow{AB}$ ,                             |
|             | \ <u>-8</u> /                                                                                                                                      |
|             | express $\overrightarrow{CP}$ as a column vector.                                                                                                  |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
| <del></del> |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
| <del></del> |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |

| <br>            |
|-----------------|
|                 |
|                 |
| <br>            |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |
| <br>_           |
|                 |
|                 |
| <br>            |
|                 |
| <br>            |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
| <br>            |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
| <br>            |
| <br>            |
|                 |
| <br>_           |
| <br><del></del> |
|                 |
|                 |
|                 |
|                 |
| <br>            |
| <br>            |
| <br><br>        |
| <br>            |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |

| <br>                                        |
|---------------------------------------------|
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
| <br>                                        |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
| <br>· - · · · · · · · · · · · · · · · · · · |
|                                             |
|                                             |
| <br>                                        |
|                                             |
|                                             |
|                                             |
|                                             |
| <br>                                        |
|                                             |
|                                             |
| <br>                                        |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
| <br>                                        |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |

Exercise 16 Date:.....

- 1. If triangle  $\overrightarrow{ABC}$  is an isosceles triangle such that  $\overrightarrow{AB} = \overrightarrow{BC}$  and M is a point on  $\overrightarrow{AC}$  such that |AM|: |MC| = 1: 1. Show that  $\overrightarrow{BA} + \overrightarrow{BC} = 2\overrightarrow{BM}$ .
- 2. In the diagram,  $\overrightarrow{AC} = n$ ,  $\overrightarrow{AB} = m$  and T is such that |CT|: |TB| = 2: 1.



- (i) Find, in terms of n and m,  $\overrightarrow{BC}$ .
- (ii) Show that  $\overrightarrow{TA} = -\frac{1}{3}(2\mathbf{m} + \mathbf{n})$
- 3.  $\overrightarrow{AB} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$  and  $\overrightarrow{AC} = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$  are vectors in the same plane. *A* is the point (1, 2).
  - (i) Find the co ordinates of *B* and *C*
  - (ii) If *D* is the midpoint of *BC*, show that  $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AD}$ .

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
| <u> </u>    |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| <br>Exercise 17 Date:                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Points <i>A</i> and <i>B</i> are position vectors                                                                                                                             |
| <br>$a = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $b = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ . Find the                                                                       |
| <br>position vector of the point $M$ on $AB$                                                                                                                                     |
| <br>such that $ AM: MB =3:2$ .                                                                                                                                                   |
|                                                                                                                                                                                  |
| 2. Given that $\mathbf{p} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ , $\mathbf{q} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and                                                     |
| $r = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ , find                                                                                                                               |
| <br>(a) $4p - 2q + 5r$                                                                                                                                                           |
| <br>(a) $4p - 2q + 3r$<br>(b) The position vector which divides $p$                                                                                                              |
| <br>and $\boldsymbol{q}$ in the ratio 2:3.                                                                                                                                       |
| <br>3.                                                                                                                                                                           |
| <br>(a) Given that $\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ , $\mathbf{q} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and                                                |
| <br>$r = {1 \choose 6}$ , find, $ 6p - 3q - 4r $ .                                                                                                                               |
| <br>(b) If $\mathbf{m} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ , $\mathbf{n} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 5 \\ 17 \end{pmatrix}$ , |
| find $ 3m-2n-r $ .                                                                                                                                                               |
| (c) S is the midpoint of the side $QR$ of a                                                                                                                                      |
| <br>triangle $PQR$ . If $\overrightarrow{PQR}$ . If $\overrightarrow{PR} = \boldsymbol{u}$ and                                                                                   |
| <br>$\overrightarrow{PQ} = v$ , express $\overrightarrow{PS}$ in terms of $u$                                                                                                    |
| <br>and $oldsymbol{v}$ .                                                                                                                                                         |
| <br>4. $A(3,1), B(-1,9)$ and $C(1,-2)$ are the                                                                                                                                   |
| vertices of the triangle $\overrightarrow{ABC}$ . $\overrightarrow{E}$ is the                                                                                                    |
| <br>point on $\overrightarrow{AB}$ such that $ \overrightarrow{AE}  = \frac{1}{3}  \overrightarrow{EB} $ .                                                                       |
| <br>Find                                                                                                                                                                         |
| <br>(a) $\overrightarrow{AB}$ (b) $\overrightarrow{AC}$ (c) $\overrightarrow{CE}$                                                                                                |
|                                                                                                                                                                                  |
| 5.                                                                                                                                                                               |
| <br>$\alpha$ ) <i>OAB</i> is a triangle, where <i>O</i> is the origin. Let $a$ , $b$ be the position                                                                             |
| <br>vectors of A and B respectively. If A                                                                                                                                        |
| <br>is a point on AB such that                                                                                                                                                   |
| $\overrightarrow{AX} = 2\overrightarrow{XB}$ and Y is the midpoint of                                                                                                            |
| $\overrightarrow{OX}$ , show that $\overrightarrow{BY} = \frac{1}{6} \boldsymbol{a} - \frac{2}{3} \boldsymbol{b}$ .                                                              |
| <br>$\beta$ ) What is the sum of the following                                                                                                                                   |
| <br>five vectors?                                                                                                                                                                |
| <br>$3\overrightarrow{OA}$ , $6\overrightarrow{BZ}$ , $2\overrightarrow{AO}$ , $\overrightarrow{AB}$ and $5\overrightarrow{OB}$ .                                                |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |

| PARALLEL VI                                                  | ECTORS                                                                                                                        |      |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------|
|                                                              | ere <i>k</i> is a scalar                                                                                                      |      |
|                                                              | 0, then the vectors $\boldsymbol{a}$ and $\boldsymbol{b}$                                                                     |      |
|                                                              | id in the same direction if                                                                                                   | <br> |
| k > 0, but in o                                              | pposite direction if $k < 0$ .                                                                                                | <br> |
| i.e. $ a  =  k $                                             | $\times  \boldsymbol{h} $                                                                                                     |      |
| 1.0.                                                         |                                                                                                                               |      |
| In particular, t                                             | the position vectors, $\boldsymbol{a} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$                                                 |      |
| and $\boldsymbol{b} = \begin{pmatrix} 6 \\ 10 \end{pmatrix}$ | are parallel since $m{b}$ can be                                                                                              |      |
| \1U'                                                         | form $\mathbf{b} = k\mathbf{a}$ , where $k$ is a                                                                              |      |
|                                                              | $=2\binom{3}{5} \Leftrightarrow \boldsymbol{b}=2\boldsymbol{a}$ . Since $\boldsymbol{b}$                                      |      |
| <b>1</b> 0                                                   | sed as a scalar multiple of $\boldsymbol{a}$ it                                                                               | <br> |
|                                                              | and <b>b</b> are parallel.                                                                                                    | <br> |
|                                                              | •                                                                                                                             |      |
| F                                                            | Dete                                                                                                                          |      |
| Exercise 18                                                  | Date:(k)                                                                                                                      |      |
|                                                              | the vectors $\mathbf{a} = \binom{k}{2}$ ,                                                                                     | <br> |
| $\boldsymbol{b} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$     | and $c = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ . Find the value                                                              |      |
| of $k$ for wh                                                | nich $\overrightarrow{AB}$ is parallel to $\overrightarrow{OC}$ ,                                                             |      |
|                                                              | s the origin.                                                                                                                 | <br> |
| (3)                                                          | (2) (4)                                                                                                                       |      |
| 2. If $p = \binom{3}{2}$                                     | , $\boldsymbol{q} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ and $\boldsymbol{r} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ . Find |      |
|                                                              | of $\lambda$ if the vector $\boldsymbol{p} + \lambda \boldsymbol{q}$ is                                                       |      |
| parallel to                                                  | r.                                                                                                                            | <br> |
| 3. The position                                              | on vectors of $A$ , $B$ and $C$ are                                                                                           |      |
|                                                              | a - b and $2a - 3b$                                                                                                           | <br> |
|                                                              | ly. If $\overrightarrow{AB}$ is parallel to $\overrightarrow{OC}$ ,                                                           | <br> |
| where $\theta$ is                                            | s the origin, find the value of $\mu$ .                                                                                       |      |
|                                                              |                                                                                                                               |      |
|                                                              |                                                                                                                               | <br> |
|                                                              |                                                                                                                               |      |
|                                                              |                                                                                                                               | <br> |
|                                                              |                                                                                                                               | <br> |
|                                                              |                                                                                                                               |      |
|                                                              |                                                                                                                               |      |
|                                                              |                                                                                                                               |      |
|                                                              |                                                                                                                               |      |
|                                                              |                                                                                                                               | <br> |
|                                                              |                                                                                                                               | <br> |
|                                                              |                                                                                                                               | <br> |
|                                                              |                                                                                                                               |      |
|                                                              |                                                                                                                               |      |

| Exercise 19 Date:                                                                                                                                                                                                                                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>2. P(6,4), Q(-2,-2) and R(4,-6) are the vertices of triangle PQR.</li> <li>(i) Determine the co - ordinates of M and S, the midpoints PQ and PR respectively.</li> <li>(ii) Find QR and MS</li> <li>(iii) State the relationship between QR and MS</li> <li>(iv) Find the equation of MS</li> </ul> |  |
|                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                              |  |

| <del></del>                                                                                               |  |
|-----------------------------------------------------------------------------------------------------------|--|
|                                                                                                           |  |
|                                                                                                           |  |
|                                                                                                           |  |
|                                                                                                           |  |
| Exercise 20 Date:                                                                                         |  |
| Exercise 20 Date:                                                                                         |  |
| of two sides of a triangle is parallel to                                                                 |  |
| the third side and equal to half of it.                                                                   |  |
| the time side and equal to hall of it.                                                                    |  |
| 2. In a triangle $ABC$ , $X$ lies on $\overrightarrow{AB}$ such that                                      |  |
| $\overrightarrow{ AX }:  \overrightarrow{XB}  = 1: 2 \text{ and } Y \text{ lies on } \overrightarrow{AC}$ |  |
|                                                                                                           |  |
| such that $ \overrightarrow{AY} $ : $ \overrightarrow{YC}  = 1 : 2$ . Show that                           |  |
| $\overrightarrow{XY}$ is parallel to $\overrightarrow{BC}$ and one – third its                            |  |
| length.                                                                                                   |  |

| <br> |
|------|
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |

### QUADRILATERALS

### (i) Parallelogram



If *ABCD* is a parallelogram then in terms of vectors:

$$\overrightarrow{AB} = \overrightarrow{DC}$$
 and  $\overrightarrow{AD} = \overrightarrow{BC}$ 

### (ii) Square

It is a parallelogram with all the sides and angles equal. Each is 90°.



### (iii) Rectangle

A rectangle is a parallelogram with each angle being 90°.



### (iv) Rhombus

A rhombus is a parallelogram with all the sides equal. The diagonals bisect and meet at right angles. The opposite angles are equal.



### Example 9

A(1,2), B(3,5), C(3,-6) and D(x,y) are the vertices of the parallelogram ABCD. Find the co – ordinates of D.

#### Solution...



Since ABCD is a parallelogram

| THE ONLY WAY OF LEARNING MATHEMATICS IS BY SOILING YOU | R HANDS |
|--------------------------------------------------------|---------|
| SOLVING MATHEMATICAL QUESTIONS.                        |         |

| $\Rightarrow \overrightarrow{AB} = \overrightarrow{DC}$                                                                               |             |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $\Rightarrow \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{OC} - \overrightarrow{OD}$                                   |             |
| 3  (1)  (3)  (X)                                                                                                                      |             |
| $\binom{3}{5} - \binom{1}{2} = \binom{3}{-6} - \binom{x}{y}$                                                                          |             |
| (2) $(3-x)$                                                                                                                           |             |
| $\binom{2}{3} = \binom{3-x}{-6-y}$                                                                                                    |             |
| $\Rightarrow 2 = 3 - x \qquad \therefore x = 1$                                                                                       |             |
| $\Rightarrow 3 = -6 - y \qquad \therefore x = 1$ $\Rightarrow 3 = -6 - y \qquad \therefore y = -9$                                    | <del></del> |
| $\Rightarrow$ 3 = -0 - y $\qquad \qquad \therefore y = -9$                                                                            |             |
| P(x,y) = P(1,y)                                                                                                                       |             |
| $\therefore D(x,y) = D(1,-9)$                                                                                                         |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
| Exercise 21 Date:                                                                                                                     |             |
| 1. $P(-1,1), Q(1,3), R(m,n)$ and $S(3,-3)$                                                                                            |             |
| are the vertices of the parallelogram                                                                                                 |             |
| PQRS. Calculate the values of $m$ and $n$ .                                                                                           |             |
|                                                                                                                                       |             |
| 2. Show that $A(-2, 1)$ , $B(1, 2)$ , $C(0, -1)$                                                                                      |             |
| and $D(-4, -2)$ are the vertices of a                                                                                                 |             |
| parallelogram.                                                                                                                        |             |
|                                                                                                                                       |             |
| 3. ABCD is a parallelogram such that                                                                                                  |             |
| $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$ . Find |             |
| $AB = \begin{pmatrix} 1 \end{pmatrix}$ and $AC = \begin{pmatrix} -3 \end{pmatrix}$ . Find                                             |             |
| (i) $\overrightarrow{BC}$ (ii) $\overrightarrow{BD}$                                                                                  |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
| <u>-</u>                                                                                                                              |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |
|                                                                                                                                       |             |

|                                                                             | <ul> <li>4. In the parallelogram OABC, M is the mid – point of AB and N is the mid – point of BC.</li> <li>If \$\overline{OA} = a\$ and \$\overline{OC} = c\$, express in terms of \$a\$ and \$c\$.</li> <li>(a) \$\overline{CA}\$ (b) \$\overline{ON}\$ (c) \$\overline{NM}\$ Describe the relationship between CA and NM.</li> </ul> |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                        |
| Exercise 22 Date:                                                           |                                                                                                                                                                                                                                                                                                                                        |
| at (5, 3). If the diagonals intersect at                                    |                                                                                                                                                                                                                                                                                                                                        |
| (0,3), find the co – ordinates of $C$ and $D$ .                             |                                                                                                                                                                                                                                                                                                                                        |
| 2. The co – ordinates of the vertices of a                                  |                                                                                                                                                                                                                                                                                                                                        |
| parallelogram $WXYZ$ are $W(1,6)$ , $X(2,2)$ , $Y(5,4)$ and $Z(a,b)$ . Find |                                                                                                                                                                                                                                                                                                                                        |
| (i) $\overrightarrow{WX}$                                                   |                                                                                                                                                                                                                                                                                                                                        |
| (ii) $\overrightarrow{ZY}$                                                  |                                                                                                                                                                                                                                                                                                                                        |
| (iii) The co – ordinates of $Z$                                             |                                                                                                                                                                                                                                                                                                                                        |
| 3. $A(-2,3), B(2,-1), C(5,0)$ and $D(x,y)$                                  |                                                                                                                                                                                                                                                                                                                                        |
| are the vertices of the parallelogram <i>ABCD</i> .                         |                                                                                                                                                                                                                                                                                                                                        |
| (a) Find $\overrightarrow{AB}$ and $\overrightarrow{DC}$ . Hence find the   |                                                                                                                                                                                                                                                                                                                                        |
| coordinates of D                                                            |                                                                                                                                                                                                                                                                                                                                        |
| (b) Calculate, correct to one decimal place, $ \overrightarrow{DB} $ .      |                                                                                                                                                                                                                                                                                                                                        |

| <del></del> |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
| <del></del> |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

#### Exercise 23

- Date:.... 1. The points *P*, *Q*, *R* and *S* are vertices of a parallelogram in the Cartesian plane. The co – ordinates of *P* and *R* are (-8,2) and (5,-2) respectively and  $\overrightarrow{QR} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ . Find
  - the co ordinates of Q and S
  - (ii) the magnitude of  $\overrightarrow{PR}$
- 2. The coordinates of the vertices of a parallelogram QRST are Q(1,6), R(2,2), S(5,4) and T(x,y).
  - Find the vectors  $\overrightarrow{QR}$  and  $\overrightarrow{TS}$  and hence determine the values of *x* and  $\gamma$
  - Calculate the magnitude of  $\overrightarrow{RS}$ (ii)
  - (iii) Express  $\overrightarrow{RS}$  in the form  $(k, \theta^{\circ})$ where k is the magnitude and  $\theta$ , the bearing.
- 3. The points A(4,7), B(x,y), C(-5,-8)and D(1,4) are the vertices of a parallelogram. Find
  - $\overrightarrow{AB}, \overrightarrow{DC}, \overrightarrow{DA}$ (i)
  - (ii) The values of x and y
- 4. If A92, 6), B(2, 2), C(7, 3) and D(x, y)are the vertices of a parallelogram *ABCD*. Calculate the coordinates of *D*.
- 5. Two vectors *p* and *q* are defined by  $p = {5 \cos x \choose 5 \sin x} \text{ and } q = {2 \cos x \choose 2 \sin x}.$ (a) If  $p + q = {4.690 \choose 5.208}$ , find to the
  - nearest whole number, the value of x, where x is acute.
  - (b) Find the value of c if c = 2p + q.
- 6. The position vectors of points *P*, *Q* and *R* with respect to the origin are  $\begin{pmatrix} 4 \\ -5 \end{pmatrix}$ ,
  - $\binom{1}{3}$  and  $\binom{-5}{2}$  respectively. If *PQRM* is a parallelogram, find:
  - (a) The position vector of M;
  - (b)  $|\overrightarrow{PM}|$ , and  $|\overrightarrow{PQ}|$ .
- 7. Given that  $\mathbf{m} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$  and  $\mathbf{n} = \begin{pmatrix} 1 \\ a \end{pmatrix}$ , where q is a scalar and  $2|\mathbf{m} - \mathbf{n}| = |\mathbf{m} + \mathbf{n}|$ ,

8.

- $\alpha$ ) The position vectors of *A* and *B* are  $a = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$  and  $b = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ respectively. Find, correct to two decimal places, |4a - 2b|.
- The position vectors of *A* and *B* are  $\boldsymbol{a} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ .

(a) The scalars *m* and *n* such that  $m\mathbf{a} + n\mathbf{b} = \begin{pmatrix} 11\\19 \end{pmatrix}$ 

(b) |2a + 7b|

9.



- (a) In the diagram, T is the mid point of AB and M is the mid – point of AT. Given that  $\mathbf{OA} = \mathbf{a}$  and  $\mathbf{OB} = \mathbf{b}$ , express as simply as possible in terms of a and b,
  - (i) **AB** 
    - (iii) OM
  - (ii) AM
- (b) Two points P and Q have position vectors **p** and **q** respectively, relative to the origin O. Given that  $\mathbf{p} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$

and 
$$\mathbf{PQ} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
, find

- (i)
- (ii) |PQ|
- (iii) The coordinates of the point R, which is such that  $\mathbf{OR} = \mathbf{QP}$ .
- (c) Given also that  $\mathbf{s} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ,  $\mathbf{t} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$  and  $l\mathbf{p} + m\mathbf{s} = \mathbf{t}$ , write down two simultaneous equations in l and m, and solve them.

10.



In the triangle OGH the midpoints of OG, OH and GH are L, M and N respectively.  $\mathbf{OG} = \mathbf{g}$ ,  $\mathbf{OH} = \mathbf{h}$ 

- (i) Write down expression, in terms of  $\mathbf{g}$  and  $\mathbf{h}$ , for
  - (a) **OL**
  - (b) **GN**
  - (c) **ON**
  - (d) OL + OM + ON

(ii)

- (a) Use the vector equation
   OG + GM = OM to express
   GM in terms of g and h.
- (b) By a similar method, express **HL** in terms of g and h.
- (c) Hence obtain an expression from **GM** + **HL** + **ON** and simplify it.

(iii)

- (a) Use your results from (ii) to express **GM HL** in terms of **g** and **h**.
- (b) K is a point, not shown on the diagram, such thatOK = GM HL. What can you say about OK and GH?

11.



In the diagram OP = a and OS = b.

- (i) Express **SP** in terms of **a** and **b**.
- (ii) Given that SX = hSP, show that OX = ha + (1 h)b.
- (iii) Given that **OQ** = 3**a** and **QR** = 2**b**, write down an expression for **OR** in terms of **a** and **b**.
- (iv) Given that  $\mathbf{OX} = k\mathbf{OR}$  use the results of parts (ii) and (iii) to find the values of h and k.
- (v) Find the numerical value of the ratio  $\frac{PX}{VS}$ .

12.



In the diagram OA = a, OB = b. OACB is a parallelogram, X is the mid – point of AC, and M is the point on AB such that  $AM = \frac{1}{3}AB$ .

- (i) Express the following vectors in terms of **a** and **b** as simply as possible: **OX**, **AB**, **AM**, **OM**.
- (ii) L is the point on **OX** such that  $\mathbf{OL} = \frac{2}{3}\mathbf{OX}$ . Express the vector **OL** in terms of **a** and **b**. what can you now say about L and M?
- (iii) **AB** meets **OC** at Y. Express the vectors **OY** and **AY** in terms of **a** and **b**, and hence, or otherwise show that **AM** : **AY** = **OM** : **OX**.

13.



In the parallelogram OABC,  $\mathbf{OP} = \frac{3}{4}\mathbf{OB}$ and APQ is a straight line.

 $\mathbf{OA} = \mathbf{a}$  and  $\mathbf{OC} = \mathbf{c}$ .

- Find **OB**, **OP** and **AP** in terms of a and c.
- (ii) By writing **OQ** as **OA** + x**AP** express **00** in terms of **a**, **c** and x.
- (iii) By writing  $\mathbf{OQ}$  as  $\mathbf{OC} + y\mathbf{CB}$ express  $\mathbf{OQ}$  in terms of  $\mathbf{a}$ ,  $\mathbf{c}$  and  $\mathbf{y}$ .
- (iv) Find the value of *x* which makes the terms in c equal in the two expressions for **OQ**. Hence find the value of y.
- Use the value of y to find  $\frac{CQ}{QR}$

14.



*OABC* is a parallelogram.  $\overrightarrow{OA} = a$ ,  $\overrightarrow{OC} = c$  and M is the midpoint of CA. Find m terms of a and c.

- (a)  $\overrightarrow{OB}$
- (b)  $\overrightarrow{CA}$
- (c)  $\overrightarrow{BM}$

15.



- (a) (i) Write down  $\overrightarrow{AB}$  as a column
  - (ii)  $\overrightarrow{AC} = \begin{pmatrix} 0 \\ 7 \end{pmatrix}$ . Work out  $\overrightarrow{BC}$  as a column vector



 $\overrightarrow{OR} = r$  and  $\overrightarrow{OT} = t$ . P is on RT such that RP : PT = 2 : 1. Q is on OTsuch that RP : PT = 2 : 1, Q is on **OT** such that  $OQ = \frac{2}{3}OT$ .

Write the following in terms of rand / or t. Simplify your answers where possible.

- (i)  $\overrightarrow{OT}$
- (ii)  $\overrightarrow{TP}$
- (iii)  $\overrightarrow{OP}$
- (iv) Write down two conclusions you can make about the line segment **QP**.



*OPQR* is a parallelogram . O is the origin.  $\overrightarrow{OP} = p$  and  $\overrightarrow{OR} = r$ . M is the mid-point of PQ and PQ and L is on OR such that OL: LR = 2: 1. The line PL is extended to the point **S**.

- (a) Find, in terms of p and r, in their simplest terms,
  - (i)  $\overrightarrow{OQ}$
  - (ii)  $\overrightarrow{PR}$
  - (iii)  $\overrightarrow{PL}$
  - (iv) The position vector of M
- (b) *PLS* is a straight line and  $PS = \frac{3}{2} PL$ . Find, in terms of  $\boldsymbol{p}$  and / or  $\boldsymbol{r}$ , in their simplest forms,
- <del>os</del> (ii)
- (c) What can you say about the points Q, Rand S?

17.



In the diagram *OABC* is a parallelogram. *OP* and *CA* intersect at *X* and

$$CP : PB = 2 : 1. \overrightarrow{OA} = a \text{ and } \overrightarrow{OC} = c.$$

- (a) Find  $\overrightarrow{OP}$ , in terms of **a** and **c**, in its simplest form.
- (b) CX : XA = 2 : 3.
  - (i) Find  $\overrightarrow{OC}$ , in terms of  $\boldsymbol{a}$  and  $\boldsymbol{c}$ , in its simplest form.
  - (ii) Find OX : XP.

18.

- (a)  $\mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ ,  $\mathbf{b} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$ ,  $\mathbf{c} = \begin{pmatrix} 14 \\ 9 \end{pmatrix}$ (i) Find  $3\mathbf{a} 2\mathbf{b}$ 

  - (ii) Find |a|.
  - (iii)  $m\mathbf{a} + n\mathbf{b} = \mathbf{c}$ , find the value of m and n

(b)



*OAB* is a triangle and *C* is the midpoint of OB. D is on AB such that AD : DB = 3 : 5. OAE is a straight line such that OA : AE = 2 : 3.  $\overrightarrow{OA} = \boldsymbol{a}$  and

- OC = c. Find, in terms of  $\boldsymbol{a}$  and  $\boldsymbol{c}$ , in its (i)
  - simplest form, (a)  $\overrightarrow{AB}$ 
    - (c)  $\overrightarrow{CE}$
  - (b)  $\overrightarrow{AD}$
- (d)  $\overrightarrow{CD}$
- (ii)  $\overrightarrow{CE} = k\overrightarrow{CD}$ . Find the value of k.

19.



In the diagram, *O* is the origin and *P* lies on  $\overrightarrow{AB}$  such that  $\overrightarrow{AP} : \overrightarrow{PB} = 3 : 4$ ,  $\overrightarrow{OA} = \boldsymbol{a}$  and  $\overrightarrow{OB} = \boldsymbol{b}$ .

- (i) Find  $\overrightarrow{OP}$ , in terms of **a** and **b**, in its simplest form.
- (ii) The line *OP* is extended to *C* such that  $\overrightarrow{OC} = m\overrightarrow{OP}$  and  $\overrightarrow{BC} = k\boldsymbol{a}$ . Find the value of m and the value of k.

#### Exercise 24

Date:....

1. The vertices of a quadrilateral, *OABC*, are (0,0), (4, 2), (6, 10) and (2,8) respectively.

Use a vector method to answer the questions which follow

- (a) Write as a column vector, in the , the vector
- (ii)
- (b) Calculate  $\overrightarrow{|OA|}$ , the magnitude of  $\overrightarrow{OA}$ (c)
  - (i) State two geometrical relationships between the line segments OA and CB.
  - (ii) Explain why *OABC* is a parallelogram.
- (d) If *M* is the midpoint of the diagonal *OB*, and *N* is the midpoint of the diagonal *AC*, determine the position vector.
  - ОM
- (ii)  $\overrightarrow{ON}$

Hence, state one conclusion which can be made about the diagonals of the parallelogram *OABC*.

- 2.  $\overrightarrow{OM}$  and  $\overrightarrow{ON}$  are position vectors with respect to the origin *O*, such that  $\overrightarrow{OM} = \mathbf{m}$  and  $\overrightarrow{ON} = \mathbf{n}$ . L is a point on MN such that ML : LN = 2 : 1.
  - Draw a sketch of the triangle *OMN* and label the points O, M, N and L.
  - Write in terms of m and n, an expression for:
    - (a)  $\overrightarrow{MN}$
- (b)  $\overrightarrow{ML}$
- If  $\mathbf{m} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$  and  $\mathbf{n} = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$ , (iii) determine the position vector of
- 3. In the diagram below, the coordinates of P and Q are (2, 4) and (8, 2) respectively. The line segment joining

the (0,0) to the point P may be written as  $\overrightarrow{OP}$ .



- (i) What form is used to describe  $\overrightarrow{OP}$ ?
- (ii) Write each of the following in column form
  - (a)  $\overrightarrow{OP}$
- (c)  $\overrightarrow{PQ}$
- (b)  $\overrightarrow{OQ}$
- (iii) Given that  $\overrightarrow{OP} = \overrightarrow{RQ}$ , determine the co ordinates of the point, R.
- (iv) State the type of quadrilateral formed by *PQRO*. Justify your answer.

4.

(a) The position vectors of the points P and Q relative to an origin, O, are  $\overrightarrow{OP} = \binom{4}{3}$  and  $\overrightarrow{OQ} = \binom{5}{0}$  respectively. The diagram shows that  $\overrightarrow{PR} = 30P$  and  $\overrightarrow{QS} = 30Q$ .



- (i) Express in the form  $\begin{pmatrix} x \\ y \end{pmatrix}$ , vector  $\alpha \cap \overrightarrow{OS} = \beta \cap \overrightarrow{PQ} = \gamma \cap \overrightarrow{A}$
- (ii) State two geometrical relationship between PQ and RS.

- (b) Given  $\overrightarrow{OA} = \boldsymbol{a}$ ,  $\overrightarrow{OB} = \boldsymbol{b}$ ,  $\overrightarrow{AP} = \frac{1}{2}\overrightarrow{OA}$  where  $\boldsymbol{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ .
  - (i) Write  $\overrightarrow{BP}$  in terms of  $\boldsymbol{a}$  and  $\boldsymbol{b}$ .
  - (ii) Find  $|\overrightarrow{BP}|$
- (c) The position vectors of points A, B and C, relative to the origin O, are  $\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ ;  $\overrightarrow{OB} = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$  and  $\overrightarrow{OC} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$  respectively.
  - (i) Express in the form  $\binom{x}{y}$ , the vector  $\alpha$   $\overrightarrow{AB}$   $\beta$   $\overrightarrow{AC}$
  - (ii) Hence, determine whether *A*, *B* and *C* are collinear, giving the reasons for your answer.

Exercise 25

Date:.....



*OPQR* is a parallelogram, with *O* the origin. *M* is the midpoint of *PQ*. *OM* and *RQ* are extended to meet at *S*.

 $\overrightarrow{OP} = \mathbf{p}$  and  $\overrightarrow{OQ} = \mathbf{r}$ .

- (a) Find, in terms of  $\boldsymbol{p}$  and  $\boldsymbol{r}$ , in its simplest form,
  - (i)  $\overrightarrow{OM}$
  - (ii) The position vector of S.
- (b) When  $\overrightarrow{PT} = -\frac{1}{2}\mathbf{p} + \mathbf{r}$ , what can you write down about the position of T?

2.



The origin O is the centre of the octagon PQRSTUVW.  $\overrightarrow{UV} = \boldsymbol{a}$  and  $\overrightarrow{WP} = \boldsymbol{b}$ . (a) Write down in terms of a and b.

- (i)  $\overrightarrow{VW}$
- (ii)  $\overrightarrow{TU}$
- (iii)  $\overrightarrow{TP}$
- (iv) The position vector of the point *P*.
- (b) In the diagram, 1 centimetre represents 1 unit. Write down the value of |a b|.
- 3. The position vector r is given by r = 2p + t(p + q).
  - (a) Complete the table below for the given values of *t*. Write each vector

in its simplest form. One result has been done for you.

- (b) *O* is the origin and *p* and *q* are shown on the diagram.
  - (i) Plot the 4 points given by the position vectors in the table.



(ii) What can you say about these four points?



In triangle OGH, the ratio

GN: NH = 3:1

 $\overrightarrow{OG} = \mathbf{g}$  and  $\overrightarrow{OH} = \mathbf{h}$ .

Find the following in terms of g and h, giving your answers in their simplest form.

- (a)  $\overrightarrow{HG}$
- (b)  $\overrightarrow{ON}$

5.



In the diagram PQS, PMR, MXS and QXR are straight lines. PQ = 2QS.

M is the midpoint of PR. QX : XR = 1 : 3

 $\overrightarrow{PQ} = \mathbf{q}$  and  $\overrightarrow{PR} = \mathbf{r}$ .

- (a) Find, in terms of q and r, (i)  $\overrightarrow{RQ}$  (ii)  $\overrightarrow{MS}$
- (b) By finding  $\overrightarrow{MX}$ , show that X is the midpoint of MS.

6



O is the origin and OABC is a parallelogram. CP = PB and AQ = QB.

 $\overrightarrow{OA} = a$  and  $\overrightarrow{OC} = c$ . Find in terms of a and c, in their simplest form,

- (a)  $\overrightarrow{PQ}$
- (b) The position vector of *M*, where *M* is the midpoint of *PQ*.

7.



*O* is the origin and *OPQRST* is a regular hexagon.

$$\overrightarrow{OP} = \boldsymbol{p}$$
 and  $\overrightarrow{OT} = \boldsymbol{t}$ .

Find, in terms of p and t, in their simplest forms.

- (a)  $\overrightarrow{PT}$
- (b)  $\overrightarrow{PR}$
- (c) The position vector of R.